B.SC., CHEMISTRY

1

SYLLABUS

FROM THE ACADEMIC YEAR 2023-2024

TAMILNADU STATE COUNCIL FOR HIGHER EDUCATION, CHENNAI – 600 005

1

Title of the Course	CHEMISTRY FOR PHYSICAL SCIENCES II (FOR MATHEMATICS & PHYSICS STUDENTS)						
Paper No.	Generic E	Generic Elective II					
Category	Generic	Year	Ι	Credits	3	Course	
	Elective	Semester	II			Code	
Instructional	Lecture	Tutorial	La	b Practice		Total	
hours per week	4	-	-			4	

Prerequisites	Chemistry for physical sciences -I					
Objectives of the course	This course aims at providing knowledge on theCo-ordination Chemistry and Water Technology					
	Carbohydrates and Amino acidsbasics and applications of electrochemistry					
	basics and applications of kinetics and catalysis					
	Various photochemical phenomenon					
Course Outline	UNIT I Co-ordination Chemistry and Water Technology Co-ordination Chemistry: Definition of terms-IUPAC Nomenclature -					
	Werner'stheory - EAN rule - Pauling's theory – Postulates - Applications					
	to [Ni(CO)4], [Ni(CN)4] ²⁻ ,[Co(CN)6] ³⁻ Chelation - Biological role of					
	Haemoglobin and Chlorophyll (elementary idea) - Applications in					
	qualitative and quantitative analysis.					
	Water Technology: Hardness of water, determination of hardness of water using EDTA method, zeolite method-Purification techniques- BOD, COD.					
	Unit II					
	Carbohydrates and Amino acids					
	fructose and sucrose Discussion of open chain ring structures of					
	glucose and fructose. Glucose –fructose interconversion. Properties of					
	starch and cellulose.					
	Amino acids: Classification - preparation and properties of alanine, preparation of dipeptides using Bergmann method. RNA and DNA (elementary idea only).					

UNIT III Electrochemistry

Galvanic cells - Standard hydrogen electrode - calomel electrode standard electrode potentials -electrochemical series. Strong and weak electrolytes - ionic product of water -pH, pKa, pKb. Conductometric titrations - pH determination by colorimetric method – buffer solutions and its biological applications - electroplating - Nickel and chrome plating – Types of cells -fuel cells-corrosion and its prevention.

3

	UNIT IV Kinetics and Catalysis
	Order and molecularity. Integrated rate expression for I and II (2A \square Products) order reactions. Pseudo first order reaction, methods of determining order of a reaction – Half-life period – Catalysis - homogeneous and heterogeneous, catalyst used in Contact and Haber's processes. Concept of energy of activation and Arrhenius equation.
	UNIT V Photochemistry
	Grothus-Draper's law and Stark-Einstein's law of photochemical equivalence, Quantum yield - Hydrogen-chloride reaction. Phosphorescence, fluorescence, chemiluminescence and photosensitization and photosynthesis (definition with examples).
Extended Professional Component (is a part of internal component only, Not to be included in the external examination question paper)	Questions related to the above topics, from various competitive examinations UPSC/ JAM /TNPSC others to be solved (To be discussed during the Tutorial hours)
Skills acquired from this course	Knowledge, Problem solving, Analytical ability, Professional Competency, Professional Communication and Transferable skills.

Recommended Text	1. V.Veeraiyan, Textbook of Ancillary Chemistry; High mount publishing house, Chennai, first edition, 2009.
	2. S.Vaithyanathan, Text book of Ancillary Chemistry; Priya Publications, Karur,2006.
	3. Arun Bahl, B.S.Bahl, Advanced Organic Chemistry; S.Chand and Company, New Delhi, twenty third edition, 2012.
	4. P.L.Soni, H.M.Chawla, Text Book of Organic Chemistry; Sultan Chand & sons, New Delhi, twenty ninth edition, 2007.
Reference Books	1. P.L.Soni, Mohan Katyal, Text book of Inorganic chemistry; Sultan
	Chand and Company, New Delhi, twentieth edition, 2007.
	2. R.Puri, L.R.Sharma, M.S.Pathania, Text book Physical Chemistry; Vishal Publishing Co., New Delhi, forty seventh edition, 2018.
	3. B.K,Sharma, Industrial Chemistry; GOEL publishing house, Meerut, sixteenth edition, 2014.
Website and e- learning source	
Course Learning O	utcomes (for Mapping with POs and PSOs)
On completion of the CO 1: write the I	the course the students should be able to
coordination	compounds and water technology
CO 2: explain the pr	reparation and property of carbohydrate, amino acids and nucleic acids.
CO 3: apply/demons cells.	strate the electrochemistry principles in corrosion, electroplating and fuel
CO 4: identify the re	eaction rate, order for chemical reaction and explain the purpose of a catalyst.
CO 5: outline the va	rious type of photochemical process.

CO /PSO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to PSOs	3.0	3.0	3.0	3.0	3.0

СО /РО	PO1	PO2	PO3	PO4	PO5
C01	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to POs	3.0	3.0	3.0	3.0	3.0

Level of Correlation between PSO's and CO's

Level of Correlation between PO's and CO's

CHEMISTRYFORPHYSICALSCIENCESII (FORMATHEMATICS&PHYSICSSTUDENTS)

6

Time: 3 Hours

Max. Marks: 75

SECTION - A (10 X 2 = 20)

Answer ALL the questions.

- 1. Give EANrule.
- 2. What is BOD?
- 3. What are Carbohydrates? Give an example.
- 4. Write the preparation of alanine.
- 5. What are buffer solutions?
- 6. What is pH?
- 7. Define Half-lifeperiod.
- 8. Define Catalysis.
- 9. State Grothus-Draper'slaw
- 10. How will you calculate Quantumyield?

$$SECTION - B (5 X 5 = 25)$$

Answer ALL the questions.

11. (a) Explain the determination of hardness of water using EDTA method

Or

- (b) Write the BiologicalroleofHaemoglobin.12. (a) Discuss aboutopenchainringstructureofglucose.
 - 2. (a) Discuss aboutopenchanningstructureorgiucose Or

- (b) Write the differences between RNA andDNA.
- 13. (a) Explain the determination of pH by colorimetric method Or
 - (b) Elaborate about Nickelandchromeplating.
- 14. (a) Derive rate expression for first order kinetics.

Or

(b) Explain the conceptofenergyofactivation.

15. (a) Write the differences between Phosphorescence and fluorescence.

Or

(b) How will you calculate quantum yield for Hydrogen-Chlorinereaction.

SECTION – B (3 X 10 = 30)

Answer any THREE of the following questions.

- 16. Write Postulates of Pauling's theory and apply it $for[Ni(CN)4]^{2-1}$
- 17. Write the preparation of dipeptides using Bergmann method.
- 18. Write notes on Conductometric titrations.
- 19. Give any two methodsofdeterminingorderofareaction.
- 20. Explain about photosensitization and photosynthesis.

Title of the									
Course	CHEMISTRY PRACTICAL FOR PHYSICAL AND								
	BIOLOGICAL SCIENCES								
	(For Mathematics and Physics – I year/II semester; For								
	Botany and Zoology II year/IV semester)								
Paper No.	Generic Elective VI								
Category	Generi	Year	I/ II Credits 1 Course Code						
	c	Semester	II/IV						
	Electiv								
	e								
Instructional	Lecture	Tutorial	Lab F	Practice		Total			
hours per week	-	-	2			2			
Prerequisites									
Objectives of the	This	course aims	s to prov	vide knowl	edge	on			
course	• id	entification	of orga	nic functio	nal g	roups			
	• di	fferent types	s of org	anic comp	ounds	with respect to	their properties		
	u.		or org			, while respect to	unen properties.		
	• de	etermination	of elen	nents in org	ganic	compounds			
	SYSTEMATIC ANALYSIS OF ORGANIC COMPOUNDS								
	The analysis must be carried out as follows:								
	(a) Functional group tests [phenol, acids (mono & di) aromatic								
	primary amine, amides (mono & di), aldehyde and glucose].								
	(b) Detection of elements (N, S, Halogens).								
	(c) To distinguish between aliphatic and aromatic compounds.								
	(d) To distinguish – Saturated and unsaturated compounds.								
			C				•		
Reference Books	V.Venkateswaran, R.Veerasamy, A.R.Kulandaivelu, Basic Principles								
	ofPracti	cal Chemist	ry; Sulta	an Chand &	& son	s, Second editio	n, 1997.		
		P N/ *							
Course Learning O	utcomes (for Mapping	g with I	POs and P	'SUs)	1			
CO 1: gain an under	te course t	the use of s	s snould tandard	flask and	0 volur	netric ninettes h	urette		
CO 2: design carry	out record	and interpre	et the re	sults of vol	lumet	ric titration	urette.		
CO 3: apply their sk	ill in the an	alysis of wa	iter/hard	lness.					
CO4: analyze the ch	emical con	stituents in a	allied ch	emical pro	oducts	5			
-				-					

CO /PSO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
Weightage	12	12	12	12	12
Weighted percentage of Course Contribution to PSOs	3.0	3.0	3.0	3.0	3.0

8

Level of Correlation between PSO's and CO's

СО /РО	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
Weightage	12	12	12	12	12
Weighted percentage of Course Contribution to POs	3.0	3.0	3.0	3.0	3.0

Level of Correlation between PO's and CO's

SCHEME OF VALUATION CHEMISTRY PRACTICAL FOR PHYSICAL AND BIOLOGICAL SCIENCES

(For Mathematics and Physics – I year/II semester; For Botany and Zoology II year/IV semester)

9

Internal assessment: 25 Marks External assessment: 75 marks Total: 100 marks Max. Marks: 75 Record: 15 Marks Organic Analysis: 60 Marks

Organic Analysis: 60 Marks

Preliminary Test: 8 Marks Aliphatic or Aromatic:7 Marks Saturated or unsaturated:7 Marks Tests for elements: 9 Marks Confirmation Tests: 12 Marks Functional groups: 10 Marks

Derivative/Coloured reaction: 7 Marks.