B.Sc Chemistry Curriculum Design

1

First Year

Semester-II

Part		Credit	Hours
			per
			week
			(L/T/P)
Part-I	Language – Tamil	3	6
Part-II	English	3	6
Part-III	General Chemistry–II CC3	5	5
	Qualitative Organic Analysis and preparation of Organic	5	5
	Compounds CC4		
	Elective II Generic/ Discipline Specific	3	4
	Mathematics (or) Botany /Zoology EC 2		
	Skill Enhancement Course SEC-2: Dairy Chemistry	2	2
Part-IV	Skill Enhancement Course SEC-3 (Discipline Specific)	2	2
	Cosmetics and Personal care Products		
		23	30

Title of the Course	GENERAL CHEMISTRY-II									
Paper No.	Core III	Core III								
Category	Core	Year	Ι	Credits	5	Course Code				
		Semester	II							
Instructional	Lecture	Tutorial	Lab Practice			Total				
hours per week	4	1	-			5				
Prerequisites	General Ch	nemistry I								
Objectives of the	This course	This course aims at providing an overall view of the								
course	• chemis	• chemistry of acids, bases and ionic equilibrium								
	 propert 	• properties of s and p-block elements								
	• chemis	chemistry of hydrocarbons								
	applica	tions of acid	s and	l bases						
	• compo	unds of mair	n bloc	ek element	s and	hydrocarbons				

Course Outline	UNIT-I
	 Acids, bases and Ionic equilibria Concepts of Acids and Bases - Arrhenius concept, Bronsted-Lowry concept, Lewis concept; Relative strengths of acids, bases and dissociation constant; dissociation of poly basic acids, ionic product of water, pH scale, pH of solutions; Degree of dissociation, common ion effect, factors affecting degree of dissociation; acid base indicators, theory of acid base indicators – action of phenolphthalein and methyl orange, titration curves - use of acid base indicators; Buffer solutions – types, mechanism of buffer action in acid and basic buffer, Henderson-Hasselbalch equation; Salt hydrolysis - salts of weak acids and strong bases, weak bases and strong acids, weak acids and weak bases - hydrolysis constant, degree of hydrolysis and relation between hydrolysis constant and degree of hydrolysis; Solubility product - determination and applications; numerical problems involving the core concepts.
	 Chemistry of s - Block Elements Hydrogen: Position of hydrogen in the periodic table. Alkali metals: Comparative study of the elements with respect to oxides, hydroxides, halides, carbonates and bicarbonates. Diagonal relationship of Li with Mg. Anomalous behaviour of Be. Chemistry of p- Block Elements (Group 13 & 14) preparation and structure of diborane and borazine. Chemistry of borax. Extraction of Al and its uses. Alloys of Al. comparison of carbon with silicon. Carbon-di-sulphide – Preparation, properties, structure and uses. Percarbonates, per monocarbonates and per dicarbonates.

UNIT-III Chemistry of p- Block Elements (Group 15-18) General characteristics of elements of Group 15; chemistry of H₂N-NH₂, NH₂OH, HN₃ and HNO₃. Chemistry of PH₃, PCl₃, PCl₅, POCl₃, P₂O₅ and oxy acids of phosphorous (H₃PO₃ and H₃PO₄). General properties of elements of group16 - Structure and allotropy of elements - chemistry of ozone - Classification and properties of oxides - oxides of sulphur SO₂ SO₃ H₂SO₄ and selenium SeO₂ – Oxy acids of sulphur (Caro's and Marshall's acids). Chemistry of Halogens: General characteristics of halogen with reference to electronegativity, electron affinity, oxidation states and oxidizing power. Peculiarities of fluorine. Halogen acids (HF, HCl, HBr and HI), oxides and oxy acids (HClO₄). Interhalogen compounds (ICl, ClF₃, BrF₅ and IF₇), pseudo halogens [(CN)₂ and (SCN)₂] and basic nature of Iodine. Noble gases: Position in the periodic table. Preparation, properties and structure of XeF₂, XeF₄, XeF₆ and XeOF₄; uses of noble gases - clathrate compounds.

[
	UNIT-IV
	Hydrocarbon Chemistry-I Petroproducts: Fractional distillation of petroleum; cracking, isomerisation, alkylation, reforming and uses
	Alkenes-Nomenclature, general methods of preparation – Mechanism of \Box - elimination reactions – E_1 and E_2 mechanism - factors influencing – stereochemistry – orientation – Hofmann and Saytzeff rules. Reactions of alkenes – addition reactions – mechanisms – Markownikoff's rule, Kharasch effect,
	oxidation reactions – hydroxylation, oxidative degradation, epoxidation, ozonolysis;
	Alkadienes Nomenclature - classification – isolated, conjugated and cumulated dienes; stability of conjugated dienes; mechanism of electrophilic addition to conjugated dienes - 1, 2 and 1, 4 additions; free radical addition to conjugated dienes– Diels– Alder reactions — polybutadiene, polyisoprene (natural rubber), vulcanisation, polychloroprene.
	Alkynes Nomenclature; general methods of preparation, properties and reactions; acidic nature of terminal alkynes and acetylene.
	Cycloalkanes: Nomenclature, Relative stability of cycloalkanes, Bayer's strain theory and its limitations.
	UNIT-V Hydrocarbon Chemistry - II Benzene: Source, structure of benzene, stability of benzene ring, molecular orbital picture of benzene, aromaticity, Huckel's (4n+2) rule and its applications. Electrophilic substitution reactions - General mechanism of aromatic electrophilic substitution - nitration, sulphonation, halogenation, Friedel-Craft's alkylation and acylation. Mono substituted and disubstituted benzene - Effect of substituent – orientation and reactivity.
	Polynuclear Aromatic hydrocarbons : Naphthalene – nomenclature, Haworth synthesis; physical properties, reactions – electrophilic substitution reaction, nitration, sulphonation, halogenation, Friedel – Crafts acylation & alkylation, preferential substitution at \Box position – reduction, oxidation – uses. Anthracene – synthesis by Elbs reaction, Diels – Alder reaction and Haworth synthesis; physical properties; reactions - Diels-Alder reaction, preferential substitution at C-9 and C-10; uses.
Extended Professional	Questions related to the above topics, from various competitive examinations UPSC/JAM /TNPSC others to be solved
Component (is a part of internal	(To be discussed during the Tutorial hours)

component only, Not to be included in the external examination question paper) Skills acquired from this course	Knowledge, Problem solving, Analytical ability, Professional Competency, Professional Communication and Transferable skills.
Recommended Text	 Madan R D, Sathya Prakash, (2003), Modern Inorganic Chemistry, 2nded, S.Chand and Company, New Delhi. Sathya Prakash, Tuli G D,Basu S K and Madan R D, (2003), Advanced Inorganic Chemistry, 17th ed., S.Chand and Company, New Delhi. Bahl B S, Arul Bhal, (2003), Advanced Organic Chemistry, 3rd ed., S.Chand and Company, New Delhi. Tewari K S, Mehrothra S N and Vishnoi N K, (1998), Text book of Organic Chemistry, 2nd ed., Vikas Publishing House, New Delhi. Puri B R, Sharma L R, (2002), Principles of Physical Chemistry, 38th ed., Vishal Publishing Company, Jalandhar.
Reference Books	 Maron S H and Prutton C P, (1972), Principles of Physical Chemistry, 4th ed., The Macmillan Company, Newyork. Barrow G M, (1992), Physical Chemistry, 5th ed., Tata McGraw Hill, New Delhi. Lee J D, (1991), Concise Inorganic Chemistry, 4thed., ELBS William Heinemann, London. Huheey J E, (1993), Inorganic Chemistry: Principles of Structure and Reactivity, 4th ed., Addison Wesley Publishing Company, India. Gurudeep Raj, (2001), Advanced Inorganic Chemistry Vol – I, 26th ed., Goel Publishing House, Meerut. Agarwal O P, (1995), Reactions and Reagents in Organic Chemistry, 8thed., Goel Publishing House,Meerut.
Website and e- learning source	https://onlinecourses.nptel.ac.in <u>http://cactus.dixie.edu/smblack/chem1010/lec</u> <u>ture_notes/4B.html</u> http://www.auburn.edu/~deruija/pdareson.pdfhttps://swayam.gov.in/course/64 - atomic-structure-and-chemical-bonding MOOC components <u>http://nptel.ac.in/courses/104101090/</u> Lecture 1: Classification of elements and periodic properties <u>http://nptel.ac.in/courses/104101090/</u>

On completion of the course the students should be able to

- **CO1:** explain the concept of acids, bases and ionic equilibria; periodic properties of s and p block elements, preparation and properties of aliphatic and aromatic hydrocarbons
- **CO2:** discuss the periodic properties of sand p- block elements, reactions of aliphatic and aromatic hydrocarbons and strength of acids
- **CO3:** classify hydrocarbons, types of reactions, acids and bases, examine the properties s and p-block elements, reaction mechanisms of aliphatic and aromatic hydrocarbons
- **CO4:** explain theories of acids, bases and indicators, buffer action and important compounds of s-block elements
- **CO5:** assess the application of hard and soft acids indicators, buffers, compounds of s and pblock elements and hydrocarbons

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	М	S	М
CO2	М	S	S	S	М	S	S	М	М	М
CO3	S	S	S	М	S	S	S	М	S	М
CO4	S	S	S	S	S	S	S	М	М	М
CO5	S	М	S	S	S	S	S	М	М	S

CO-PO Mapping (Course Articulation Matrix)

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Level of Correlation between PSO's and CO's

GENERAL CHEMISTRY-II

Model Question Paper

7

SECTION A – $(10 \times 2 = 20 \text{ marks})$

Answer ALL questions

- 1. Write a short note on the concept of Bronsted-Lowry theory.
- 2. Define a solubility product.
- 3. Mention the uses of KClO3.
- 4. Write any two alloys of Al.
- 5. Write down any four oxy-acids of sulphur.
- 6. What is meant by pseudo-halogens?
- 7. What is cracking?
- 8. What is geometric isomerism, given a suitable example?
- 9. Define Huckel's rule.
- 10. Mention any two uses of naphthalene.

SECTION B – $(5 \times 5 = 25 \text{ marks})$

Answer ALL questions

11. a) Discuss the theory of acid base indicators.

Or

b) Derive the Hederson- Hasselbalch equation.

12. a) Discuss the anomalous behavior of Berilium.

Or

b) Write notes on the comparison between carbon and silicon.

13. a) Discuss the chemical properties of P₂O₅ and PH₃.

Or

b) Discuss the inert halogen compounds of ICl, ClF₃ and IF₇.

14. a) Discuss the Hafmann and Saytzeff rule with a suitable example.

Or

- b) Explain the conformational analysis of cyclohexane.
- 15. a) Discuss the MO of benzene.

Or

b) Discuss the Haworth synthetic preparation method of Anthracene.

SECTION C – $(3 \times 10 = 30 \text{ marks})$

Answer any THREE questions

16. Discuss the mechanism of buffer action in acids and bases.

17. Discuss the preparation and structure of diborane and borazine.

18. Explain the preparation, properties, and structure of XeF₂, XeF₄, and XeOF₄.

19. Write notes on Brayer's strain theory and mention its limitations.

20. Explain the following electrophilic reactions of anthracene:

- a) Nitration
- b) Sulphonation
- c) Friedel-Crafts acylation
- d) Halogenation
- e) Friedel-Crafts alkylation

Title of the Course	QUALITATIVE ORGANIC ANALYSIS AND PREPARATION OF ORGANIC COMPOUNDS							
Paper No.	Core IV	Core IV						
Category	Core	Year	Ι	Credits	2	Course Code		
		Semester	II	1				

Instructional	Lecture	Tutorial	Lab Practice	Total			
hours per week	-	-	3	3			
Prerequisites	General Ch	nemistry II					
Objectives of	This course	e aims at pro	widing knowledge on	l			
the course		ory safety					
		ig glass ware					
	•	s of organic	nic compounds				
	propure	anon or orga	ine compounds				
Course Outline	UNIT I						
	Safety rule	s, symbols a	nd first-aid in chemis	stry laboratory			
	Basic ideas about Bunsen burner, its operation and parts of the flame. Chemistry						
	laboratory glassware –basis information and uses						
	Unit II						
	Qualitative Organic Analysis						
	-	0	•	al elements - nitrogen, sulphur and			
	halogens						
		-		ration and unsaturation,			
	identification of functional groups using solubility tests						
	Confirmation of functional groups						
	 monocarboxylic acid, dicarboxylic acid monobydric phonol, polyhydric phonol 						
	monohydric phenol, polyhydric phenolaldehyde, ketone, ester						
	•	•	rate (reducing and no	n-reducing sugars)			
	•		secondary, tertiary an				
	•		de, diamide, thioamid	le			
	•		itro compound on of derivatives for f	functional groups			
	•	rieparatio	on of uctivatives for I	unctional groups			
I							

Prepa	ration of Organic Compounds (Any 5)
i.	Nitration - picric acid from Phenol
ii.	Halogenation - p-bromo acetanilide from acetanilide
iii.	Oxidation - benzoic acid from Benzaldehyde
iv.	Microwave assisted reactions in water:
v.	Methyl benzoate to Benzoic acid
vi.	Salicylic acid from Methyl Salicylate
vii.	Rearrangement - Benzil to Benzilic Acid viii. Hydrolysis of benzamide
Benz	zoic Acid

Separation and Purification Techniques (Not for Examination)
1. Purification of organic compounds by crystallization (from water / alcohol) and distillation
2. Determination of melting and boiling points of organic compounds.
3. Steam distillation - Extraction of essential oil from citrus fruits/eucalyptus leaves.
4. Chromatography (any one) (Group experiment)
(i) Separation of amino acids by Paper Chromatography
(ii)Thin Layer Chromatography - mixture of sugars / plant pigments /permanganate dichromate.
(iii) Column Chromatography - extraction of carotene, chlorophyll and xanthophyll from leaves / separation of anthracene - anthracene picrate.
5. Electrophoresis – Separation of amino acids and proteins. (Demonstration)
6. Isolation of casein from milk/Determination of saponification value of oil or fat/Estimation of acetic acid from commercial vinegar. (Any one Group experiment) (4,5& 6–not for ESE)

Reference	1. Venkateswaran, V.; Veeraswamy, R.; Kulandaivelu, A.R. Basic Principles of
Books	<i>Practical Chemistry</i> , 2 nd ed.; Sultan Chand: New Delhi, 2012.
	2. Manna, A.K. <i>Practical Organic Chemistry</i> , Books and Allied: India, 2018.
	3. Gurtu, J. N; Kapoor, R. <i>Advanced Experimental Chemistry (Organic)</i> , Sultan Chand: New Delhi, 1987.
	4. Furniss, B. S.; Hannaford, A. J.; Smith, P. W. G.; Tatchell, A.R. Vogel's
	Textbook of Practical Organic Chemistry, 5th ed.; Pearson: India, 1989.
Website and e-	
learning source	https://www.vlab.co.in/broad-area-chemical-sciences
Course Learning	Outcomes (for Mapping with POs and PSOs)
On completion of	f the course the students should be able to
CO1: observe the	physical state, odour, colour and solubility of the given organic compound.
•	ne presence of special elements and functional group in an unknown organic performing a systematic analysis.
diamides, r	nono and dicarboxylic acids, primary, secondary and tertiary amines, mono and nono and polyhydric phenols, aldehyde and ketone, reducing and non- reducing explain the reactions behind it.
CO4: exhibit a so	lid derivative with respect to the identified functional group.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	М	S	М
CO2	М	S	S	S	М	S	S	М	М	М
CO3	S	S	S	М	S	S	S	М	S	М
CO4	S	S	S	S	S	S	S	М	М	М

CO-PO Mapping (Course Articulation Matrix)

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
Weightage	12	12	12	12	12

Weighted percentage of					
Course Contribution to	3.0	3.0	3.0	3.0	3.0
Pos					

Level of Correlation between PSO's and CO's

SCHEME OF VALUATION QUALITATIVE ORGANIC ANALYSIS AND PREPARATION OF

ORGANIC COMPOUNDS

12

Internal assessment: 25 Marks External assessment: 75 marks Total: 100 marks Max. Marks: 75 Record: 15 Marks Preparation: 20 (quantity: 10 & quality: 10) Organic Analysis: 40 Marks

Organic Analysis : 40 Marks

Aliphatic or Aromatic: 6 Marks Saturated or unsaturated: 6 Marks Tests for elements: 9 Marks Preliminary Test: 7 Marks Confirmation Tests: 12 Marks.