THIRUVALLUVAR UNIVERSITY SERKKADU, VELLORE-632115

B.Sc. MATHEMATICS
SYLLABUS

FROM THE ACADEMIC YEAR
2023-2024

Template for Curriculum Design for UG Programme in Mathematics Credit Distribution for UG Programme in Mathematics

B.Sc Mathematics

First Year
Semester-II

Part	List of Courses	Credit	Hours per week (L/T/P)
	Language -Tamil	3	6
Part-II	English	3	6
Part-III	Analytical Geometry	5	5
	Integral Calculus	5	5
	Elective Course 1 (Generic / Discipline Specific) EC2	3	4
	Skill Enhancement Course -SEC-2 (Discipline Specific / Generic)	2	2
	Skill Enhancement Course -SEC-3 (Discipline Specific / Generic)	2	2
		$\mathbf{2 3}$	$\mathbf{3 0}$

B.Sc Mathematics Core Courses

Title of	Course	ANALYTICAL GEOMETRY					
Paper Number		CORE 3					
Category	Core	Year	I	Credits	5 5	Course Code	
		Semester	II				
Instructional Hours per week		Lecture		Tutorial	Lab Practice	Total	
		5			--	5	
Pre-requisite		$12^{\text {th }}$ Standard Mathematics					
Objectives of the Course		- To understand and apply the concept of homogeneous equations of second degree to represent straight lines in different forms. - To derive polar equations for straight lines, circles, and conic sections, and analyze their geometric properties. - To formulate general equations of planes, calculate angles between two planes, and determine perpendicular distances. - To calculate the angle between a line and a plane, determine the length of perpendiculars, and analyze coplanar and skew lines. - To originate equations of spheres, determine lengths of tangents, and analyze sections of spheres.					
Course Outline		Unit - I: Pair of Straight lines Introduction - Homogeneous equation of second degree - Angle between the lines - Equation for the bisector of the angle between the lines - Condition for a second degree equation to represent a pair of straight lines. (Chapter 3: Sections 3.1-3.5 Pages: 89-129).					
		Unit - II: Polar Coordinates Introduction - Definition of polar coordinates - Relation between Cartesian coordinates and Polar coordinates - polar equation of a straight line - circle - Polar equation of a conic. (Chapter 9: Sections: 9.1-9.7.1 Pages: 480-500).					
		Unit - III: Plane Introduction - General equations of plane - Angle between two planes - Perpendicular distance - Plane passing through: Three given points, Intersection of two given planes - Condition for a second degree equation to represent a pair of planes. (Chapter 12: Sections: 12.1-12.12 Pages 585-629).					
		Unit - IV: Straight Lines Introduction - Equations of straight Lines - Angle between a line and plane - Length of the perpendicular - Coplanar lines - Skew lines Intersection of three planes. (Chapter 13: Sections: 13.1 - 13.12 Pages: $630-647$, $648-686$).					

	Unit - V: Sphere Equations of sphere - Length of the tangent - Section of a sphere - Equation of circle - Intersection of two spheres - Condition for the orthogonality - Radical planes.
(Chapter 14: Sections: 14.1-14.11 Pages: 687-695, 699-727).	

Course Learning Outcome (for Mapping with POs and PSOs)

CO Number	CO Statement	Knowledge Level
CO 1	Understand and apply the concept of homogeneous equations of second degree to represent straight lines in different forms.	K1,K2
CO 2	Derive polar equations for straight lines, circles, and conic sections, and analyze their geometric properties.	$\mathrm{K} 4, \mathrm{~K} 5$
CO 3	Formulate general equations of planes, calculate angles between two planes, and determine perpendicular distances.	K5,K6
CO 4	Calculate the angle between a line and a plane, determine the length of perpendiculars, and analyze coplanar and skew lines.	K5,K6
CO 5	Formulate equations of spheres, determine lengths of tangents, and analyze sections of spheres.	K4,K5,K6

Mapping of CO with PO and PSO

| CO | Programme Outcomes (PO) | | | | | Programme Specific Outcomes (PSO) | | | | Mean
 Scores
 of COs | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | PO1 | PO2 | PO3 | PO4 | PO5 | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | |
| 1 | 3 | 3 | 3 | 3 | 2 | 3 | 3 | 3 | 3 | 2 | 2.8 |
| 2 | 3 | 3 | 3 | 3 | 2 | 3 | 3 | 3 | 3 | 2 | 2.8 |
| 3 | 3 | 3 | 3 | 3 | 2 | 3 | 3 | 3 | 3 | 1 | 2.7 |
| 4 | 3 | 3 | 3 | 3 | 1 | 3 | 3 | 3 | 3 | 1 | 2.6 |
| 5 | 3 | 3 | 3 | 3 | 1 | 3 | 3 | 2 | 3 | 1 | 2.5 |

Title of the	Course	INTEGRAL CALCULUS					
Paper Number		CORE 4					
Category	Core	Year	I	Credits	C	Course Code	
		Semester	II				
Instructional Hours per week		Lecture		Tutorial	Lab Practice	Total	
		5			--	5	
Pre-requisite		$12^{\text {th }}$ Standard Mathematics					
Objectives of the Course		- Knowledge on integration and its geometrical applications, double, triple integrals and improper integrals. - Knowledge about Beta and Gamma functions and their applications. - Skills to Determine Fourier series expansions.					
Course Outline		UNIT-I: Reduction formulae -Types, integration of product of powers of algebraic and trigonometric functions, integration of product of powers of algebraic and logarithmic functions - Bernoulli's formula, Feyman's technique of integration.					
		UNIT-II: Multiple Integrals - definition of double integrals evaluation of double integrals - double integrals in polar coordinates Change of order of integration.					
		UNIT-III: Triple integrals -applications of multiple integrals volumes of solids of revolution - areas of curved surfaces-change of variables - Jacobian.					
		UNIT-IV: Beta and Gamma functions - infinite integral - definitionsrecurrence formula of Gamma functions - properties of Beta and Gamma functions- relation between Beta and Gamma functions Applications.					
		UNIT-V: Geometric and Physical Applications of Integral calculus.					
Extended Professional Component (is a part of internal component only, Not to be included in the External Examination question paper)		Questions related to the above topics, from various competitive examinations UPSC / TNPSC / others to be solved (To be discussed during the Tutorial hour)					
Skills acq this course	uired from	Knowledge, Problem Solving, Analytical ability, Professional Competency, Professional Communication and Transferrable Skill					

Recommended Text	1. H. Anton, I. Birens and S. Davis, Calculus, John Wiley and Sons, Inc., 2002.
2. G.B. Thomas and R.L. Finney, Calculus, Pearson Education, 2007.	
3. D. Chatterjee, Integral Calculus and Differential Equations, Tata-	
McGraw Hill Publishing Company Ltd.	
4. P. Dyke, An Introduction to Laplace Transforms and Fourier Series,	
Springer Undergraduate Mathematics Series, 2001 (second	
edition).	

Course Learning Outcome (for Mapping with POs and PSOs)

Students will be able to
CLO 1: Determine the integrals of algebraic, trigonometric and logarithmic functions and to find the reduction formulae

CLO 2: Evaluate double and triple integrals and problems using change of order of integration
CLO 3: Solve multiple integrals and to find the areas of curved surfaces and volumes of solids of revolution

CLO 4: Explain beta and gamma functions and to use them in solving problems of integration
CLO 5: Explain Geometric and Physical applications of integral calculus

	POs						PSOs		
	1	2	3	4	5	6	1	2	3
CLO1	3	1	3	-	-	-	3	2	1
CLO2	3	1	3	-	-	-	3	2	1
CLO3	3	1	3	-	-	-	3	2	1
CLO4	3	1	3	-	-	-	3	2	1
CLO5	3	1	3	-	2	1	3	2	1

Generic Elective Courses (Allied Courses)

Title of th	Course	ALLIED MATHEMATICS - II						
Paper Number		ELECTIVE COURSE II						
Category	Core	Year	I OR II		Credits	$3 \mathrm{C\mid l}$	Course Code	
		Semester		II OR IV				
Instructional Hours per week		Lecture		Tutorial		Lab Practice	Total	
		4				--	4	
Pre-requisite		$12^{\text {th }}$ Standard Mathematics						
Objectives of the Course		- To discuss and analyze the concept of gradient, divergence and curl and its properties. - To be familiar with Green's, Gauss and Stoke's theorem in vector integrals. - To find the solution of first order linear partial differential equations. - To solve the ordinary differential equations by using Laplace and Inverse Laplace Transform.						
Course Outline								
		Differentiation of vectors - Differential operators - Solenoidal Irrotational - Directional derivative - Gradient -Divergence and curl Formula involving operator ∇. (Chapter 8: Pages: 329-363)						
		Unit - II: Integration of Vectors						
		Line integrals - Surface integrals - Volume integrals - Statements of Gauss divergence, Green's, Stoke's theorems and its applications verifications. (Chapter 8: Pages: 364-390, 395-418 excluding Green's theorem in space- problems)						
		Unit - III: Partial Differential Equations Formation of partial differential equations by eliminating arbitrary constants and arbitrary functions - Solutions of standard types of first order equations: $\quad f(p, q)=0, f(x, p)=g(y, q), f(x, p, q)=$ $0, f(y, p, q)=0, f(z, p, q)=0: z=p x+q y+f(p, q)$ (Chapter 6: Pages: 252-269)						
		Unit - IV: Laplace Transforms Definition - Laplace transforms of $\mathrm{e}^{\mathrm{at}}, \cos a t, \sin$ at, $\cosh a t, \sinh a t, \mathrm{t}^{\mathrm{n}}$, $e^{\operatorname{at} f(t), t^{n} f(t), f^{\prime}(t), f^{\prime \prime}(t) \text {. } \quad . . \text {. }}$ (Chapter 7: Pages: 289-298)						

	UNIT-V: Inverse Laplace transforms - Solving differential equations of second order with constant coefficients using Laplace transform. (Chapter 7: Pages: 299-317 excluding simultaneous equations problems)
Extended Professional Component is apart of internal component only, Not to be includedinthe External Examination question paper)	Questions related to the above topics, from various competitive examinations UPSC / TNPSC / others to be solved (To be discussed during the Tutorial hour)
Skills acquired from this course	Knowledge, Problem Solving, Analytical ability, Professional Competency, Professional Communication and Transferrable Skill
Recommended Text	S. Narayanan, P. Kandhasamy, R. Hanumantha Rao and T.K. Manickavasagam Pillai, Ancillary Mathematics, Volume II, S. Viswanathan Printers, Chennai 2010.
Reference Books	1. P. Balasubramaniyam, K. G. Subramanian, Ancillary Mathematics, Volume - I, Tata McGraw - Hill publishing company limited, New Delhi, 1996. 2. P. Durai Pandian, S. Udaya Baskaran, Allied Mathematics, Volume - I, Muhil publishers, 1 ${ }^{\text {st }}$ Edition, Chennai, 1997. 3. P. Kandsamy and K. Thilagavathy, Allied Mathematics volume - I, Volume - II, S. Chand \& Company, New Delhi, 2004. 4. Shanti Narayan, P.K. Mittal, Differential Calculus, S. Chand \& Co, New Delhi, 2005. 5. A. Singaravelu, Allied Mathematics, Meenakshi Agency, Chennai, 2001. 6. P.R. Vittal, Allied Mathematics, Margham Publications, Chennai, 1999.

Course Learning Outcomes:

This course will enable the students to:

CO Number	CO Statement	Knowledge Level
CO 1	discuss and analyze the concept of gradient, divergence and curl and its properties.	K2, K4
CO 2	recognize the importance of Green's, Gauss and Stoke's theorem in vector integrals.	K1
CO 3	find solution of first order linear partial differential	K5

	equations using Lagrange's method.	
CO4	solve the ordinary differential equations by using Laplace Transform.	K3
CO5	develop Fourier series of the periodic functions.	K6

Mapping of CO with PO and PSO												
Programme Outcomes (PO)							Programme Specific Outcomes (PSO)					Mean Scores of COs
PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5	
2	2	1	3	2	2	1	3	3	3	2	2	2.17
2	3	2	2	3	2	3	2	3	2	3	2	2.42
3	3	2	2	3	3	3	2	3	2	3	2	2.58
3	3	2	2	3	1	3	3	2	3	2	1	2.33
3	2	1	2	1	2	2	2	2	2	1	3	1.92

Title of the Course		NUMERICAL METHODS with Applications - II						
Paper Number		ELECTIVE - II						
Category	Core	Year	I OR II	Credits	$3 \quad$ Co	Course Code		
		Semester	II OR IV					
Instructional Hours per week		Lecture		Tutorial	Lab Practice	Total		
		--	4					
Pre-requisite			$12^{\text {th }}$ Standard Mathematics					
Objectives of the Course		To evaluate derivatives using Newton's forward and backward differences formulae. To acquire the knowledge about evaluation of numerical integration. To evaluate the solution of linear homogeneous difference equations with constant coefficients. To obtain numerical solutions to the ordinary differential equations.						
Course Outline		Unit I: Numerical Differentiation: Derivatives using Newton's Forward and Backward Difference Formulae Derivatives using Stirling's FormulaDerivatives using Divided Difference Formula- Maxima and Minima using the above Formulae. Chapter 7 :Section 7.1 to $7.4 \& 7.6$						
		Unit II: Numerical Integration: Trapezoidal Rule-Simpson's One-Third Rule - Simpson's Three-Eighth Rule- Weddle's Rule. Chapter 7 :Section 7.9 \& 7.13 to 7.15						
		Unit III: Difference Equations: Linear Homogenous and Non Homogenous Difference Equation with constant coefficients- particular integrals for $a^{x}, x^{m}, \sin k x, \cos k x, a^{x} F(x)$. Chapter 8 :Section 8.1 to $8.4 \& 8.6$						
		Unit IV: Numerical solution of Ordinary Differential Equations (I order only): Taylor's series method- Picard's method. Chapter 9: Section 9.5 ,9.6						
		Unit V: Numerical solution of Ordinary Differential Equations (I order only): Euler's Method- Modified Euler's Method-Runge-Kutta Method (Fourth Order only). Chapter 9 : Section 9.7,9.9 to 9.11						

Extended Professional (is a Component aral part of internal component only, Not to be included in the External Examination question paper)	Questions related to the above topics, from various competitive examinations UPSC / TNPSC / others to be solved (To be discussed during the Tutorial hour)
Skills acquired from this course	Knowledge, problem solving, analytical ability, professional competency, professional communication and transferable skill.
Recommended Text	 Numerical Analysis, S. Chand \& Company Ltd., New Delhi-55.
Reference Books	1.B.D. Gupta.(2001) Numerical Analysis. Konark Pub. Ltd., Delhi 2. M.K. Venkataraman. (1992) Numerical methods for Science and Engineering National Publishing Company, Chennai. 3. S. Arumugam. (2003) Numerical Methods, New Gamma Publishing, Palayamkottai. 4. H.C. Saxena. (1991) Finite differences and Numerical analysis
S.Chand \& Co., Delhi	
https://ocw.mit.edu/courses/22-15-essential-numerical-methods-fall- e-Learning Source	2014/pages/syllabus/ https://ocw.mit.edu/courses/18-330-introduction-to-numerical-
analysis-spring-2004/	

Course Learning Outcome (for Mapping with POs and PSOs)

Students will be able to

CLO1: After studied unit -1 , the student will be able to evaluate derivatives by applying Newton's forward and backward differences formulae.

CLO2: After studied unit -2 , the student will be able to evaluate integrations by applying the trapezoidal rule, Simpson"s rules, and Weddle"s rule.

CLO3: After studied unit -3 , the student will be able to find a complete solution to linear difference equations.

CLO4: After studied unit -4 , the student will be able to estimate approximate numerical solutions of ordinary differential equations by Euler, Picard and Taylor.

CLO5: After studied unit -5 , the student will be able to estimate approximate numerical solutions of ordinary differential equations by Runge-Kutta methods.

	POs						PSOs		
	1	2	3	4	5	6	1	2	3
CLO1	3	1	3	2	4	-	3	2	1
CLO2	2	1	3	1	4	-	3	2	1
CLO3	3	1	3	1	2	-	3	2	1
CLO4	3	1	3	2	4	-	3	2	1
CLO5	3	1	3	2	4	-	3	2	1

