

THIRUVALLUVAR UNIVERSITY SERKKADU, VELLORE-632115

B.Sc. MATHEMATICS SYLLABUS

FROM THE ACADEMIC YEAR

2023 – 2024

.

Template for Curriculum Design for UG Programme in Mathematics

Credit Distribution for UG Programme in Mathematics

B.Sc Mathematics

First Year

Semester-II

Part	List of Courses	Credit	Hours per week (L/T/P)
Part-I	Language – Tamil	3	6
Part-II	English	3	6
Part-III	Analytical Geometry	5	5
	Integral Calculus	5	5
	Elective Course 1 (Generic / Discipline Specific) EC2	3	4
	Skill Enhancement Course -SEC-2 (Discipline Specific / Generic)	2	2
	Skill Enhancement Course -SEC-3 (Discipline Specific / Generic)	2	2
		23	30

B.Sc Mathematics Core Courses

Title of the Course		ANALYTICAL GEOMETRY							
Paper Number		CORE 3							
Category	Core	Year	Ι		Credits	5	Cou	rse	
		Semester	II	1			Cod	e	
Instruction	nal	Lecture		Tuto	orial	Lab Prac	etice	Tota	ા
Hours		5						5	
per week	1 40	12 th Standa	nd M	lothor	ation				
Pre-requis	site			lametor	d and an	volu the	00000	nt of	- homogonooug
Course Course Ou	ıtline	 equations of second degree to represent straight lines in different forms. To derive polar equations for straight lines, circles, and conic sections, and analyze their geometric properties. To formulate general equations of planes, calculate angles between two planes, and determine perpendicular distances. To calculate the angle between a line and a plane, determine the length of perpendiculars, and analyze coplanar and skew lines. To originate equations of spheres, determine lengths of tangents, and analyze sections of spheres. Unit - I: Pair of Straight lines Introduction – Homogeneous equation of second degree – Angle between the lines – Equation for the bisector of the angle between the lines – Condition for a second degree equation to represent a pair of straight lines							
		(Chapter 3: Sections 3.1 - 3.5 Pages: 89 - 129). Unit - II: Polar Coordinates Introduction – Definition of polar coordinates – Relation between Cartesian coordinates and Polar coordinates – polar equation of a straight line – circle – Polar equation of a conic. (Chapter 9: Sections: 9.1 – 9.7.1 Pages: 480 - 500).							
		Unit - III:	Plan	ie					
		Introductio	on – C	Genera	al equations	of plane –	Angle	e betw	een two planes
		– Perpendi	cular	[.] distar	nce – Plane	passing th	rough:	Three	e given points,
		Intersection of two given planes – Condition for a second degree							
		equation to	o repr	resent	a pair of pla	nnes.			
		(Chapter 1	2: Se	ections	: 12.1 – 12.	12 Pages 5	85 - 6	29).	
		Unit - IV: Introduction plane – Lee Intersection (Chapter 1	Stra on – H ngth n of t 3: Se	ight L Equation of the chree p	lines ons of straig perpendicu planes. : 13.1 – 13.	ght Lines – lar – Copla 12 Pages: (- Angle anar lir 630 – (e betw nes – ; 647, 6	veen a line and Skew lines – 548 - 686).

u na katu na ka

	Unit - V: Sphere						
	Equations of sphere – Length of the tangent – Section of a sphere –						
	Equation of circle – Intersection of two spheres – Condition for the						
	orthogonality – Radical planes.						
	(Chapter 14: Sections: 14.1 – 14.11 Pages: 687 – 695, 699 - 727).						
Extended	Questions related to the above topics, from various competitive						
Protessional Component (ig. a)	(To be discussed during the Tutorial hour)						
component (is a	(10 be discussed during the Tutorial nour)						
component only							
Not to be included							
in the External							
Examination							
question paper)							
Skills acquired	Knowledge, Problem Solving, Analytical ability, Professional						
from this course	Competency, Professional Communication and Transferrable Skill						
Recommended Text	P.R.Vittal, Analytical Geometry 2D and 3D, Pearson Publications, Chennai.						
Reference Books	1. P.Duraipandian and Laxmi Duraipandian, Analytical Geometry Two dimensions, Emerald Publication.						
	 Shanti Narayan and P.K.Mittal, Analytical Solid Geometry of 3D, S. Chand Publications. 						
	 Manicavasagam Pillay & Natarajan, Analytical Geometry of Two dimensions, 						
	S. Viswanathan (printers & publication) Pvt Ltd.						
	4. Manicavasagam Pillay & Natarajan, Analytical Geometry of Three dimensions,						
	S. Viswanathan (printers & publication) Pvt Ltd.						
Website and							
e-Learning Source	https://mathworld.wolfram.com/ , http://www.univie.ac.at/future.media/moe/galarie.html/						

CO Number	CO Statement	Knowledge Level
CO1	Understand and apply the concept of homogeneous equations of second degree to represent straight lines in different forms.	K1,K2
CO2	Derive polar equations for straight lines, circles, and conic sections, and analyze their geometric properties.	K4, K5
CO3	Formulate general equations of planes, calculate angles between two planes, and determine perpendicular distances.	K5,K6
CO4	Calculate the angle between a line and a plane, determine the length of perpendiculars, and analyze coplanar and skew lines.	K5,K6
CO5	Formulate equations of spheres, determine lengths of tangents, and analyze sections of spheres.	K4,K5,K6

Course Learning Outcome (for Mapping with POs and PSOs)

Mapping of CO with PO and PSO

со	P	rogramn	ne Outco	omes (PO	D)	Programme Specific Outcomes (PSO)					Mean Scores
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	of COs
1	3	3	3	3	2	3	3	3	3	2	2.8
2	3	3	3	3	2	3	3	3	3	2	2.8
3	3	3	3	3	2	3	3	3	3	1	2.7
4	3	3	3	3	1	3	3	3	3	1	2.6
5	3	3	3	3	1	3	3	2	3	1	2.5

6

Title of the Course	INTEGRAI	L CALCU							
Paper Number	CORE 4	CORE 4							
Category Core	Year	Ι	Credits	5	Cou	rse			
	Semester	II			Cod	e			
Instructional Hours	Lecture	Tut	orial	Lab Pra	ctice	Tota	1		
per week	5					5			
Pre-requisite	12 th Standar	d Mathema	atics						
Objectives of th	e • Knowled	lge on inte	gration and	its geome	trical a	applica	ations, double,		
Course	triple int	egrals and	improper in	ntegrals.					
	Knowled	• Knowledge about Beta and Gamma functions and their							
	applicati	ons.							
	• Skills to	Determine	Fourier se	ries expans	sions.				
Course Outline	UNIT-I: Re	duction for	rmulae -Ty	pes, integr	ation o	of proc	luct of powers		
	of algebraic	and trigo	onometric	functions,	integra	ation	of product of		
	powers of a	lgebraic a	nd logarith	mic functi	ons - l	Berno	ulli's formula,		
	Feyman's te	chnique of	integration	1.			,		
	UNIT-II:	 Multiple_I	ntegrals -	definitio	n of	doubl	e integrals -		
	evaluation	f double ir	ntegrals – d	ouble inte	orals in	uouoi 1 nolai	r coordinates -		
	Change of a	ndon of inte	negrais – c			i poia			
	UNIT-111:	Triple int	tegrals –aj	oplications	of n	nultipl	le integrals -		
	volumes of	solids of r	evolution -	areas of	curved	surfa	ces-change of		
	variables - J	acobian.							
	UNIT-IV: H	Beta and G	amma func	tions – inf	inite ir	ntegral	l - definitions-		
	recurrence	formula of	f Gamma	functions	– prop	perties	of Beta and		
	Gamma fur	Gamma functions- relation between Beta and Gamma functions -							
	Applications	Applications.							
	UNIT-V: G	eometric a	nd Physica	l Applicati	ons of	Integr	al calculus.		
Extended Profession	al Questions r	elated to	the above	topics,	from v	variou	s competitive		
Component (is a par	rt examination	s UPSC / 1	FNPSC / ot	hers to be	solved				
of interna	al (To be discu	(To be discussed during the Tutorial hour)							
component only, No	ot								
to be included in th	ne								
External Examinatio	n								
question paper)									
Skills acquired from	m Knowledge	, Problen	n Solving	, Analyti	cal al	bility,	Professional		
this course	Competency	, Professio	onal Comm	unication a	nd Tra	nsferr	able Skill		

sten deleten de

Recommended Text	1. H. Anton, I. Birens and S. Davis, Calculus, John Wiley and Sons,						
	Inc., 2002.						
	2. G.B. Thomas and R.L. Finney, Calculus, Pearson Education, 2007.						
	3. D. Chatterjee, Integral Calculus and Differential Equations, Tata-						
	McGraw Hill Publishing Company Ltd.						
	4. P. Dyke, An Introduction to Laplace Transforms and Fourier Series,						
	Springer Undergraduate Mathematics Series, 2001 (second						
	edition).						
Website and							
e-Learning Source	https://nptel.ac.in						

Course Learning Outcome (for Mapping with POs and PSOs)

Students will be able to

CLO 1: Determine the integrals of algebraic, trigonometric and logarithmic functions and to find the reduction formulae

CLO 2: Evaluate double and triple integrals and problems using change of order of integration

CLO 3: Solve multiple integrals and to find the areas of curved surfaces and volumes of solids of revolution

CLO 4: Explain beta and gamma functions and to use them in solving problems of integration **CLO 5:** Explain Geometric and Physical applications of integral calculus

		POs						PSOs		
	1	2	3	4	5	6	1	2	3	
CLO1	3	1	3	-	-	-	3	2	1	
CLO2	3	1	3	-	-	-	3	2	1	
CLO3	3	1	3	-	-	-	3	2	1	
CLO4	3	1	3	-	-	-	3	2	1	
CLO5	3	1	3	-	2	1	3	2	1	

Generic Elective Courses (Allied Courses)

.

Title of the Course	ALLIED MATHEMATICS – II							
Paper Number	ELECTIVE COURSE II							
Category Core	Year I O	R II Credits	3 C	ourse				
	Semester II (OR IV	C	ode				
Instructional	Lecture	Tutorial	Lab Practice	e Total				
Hours	4	-		4				
per week								
Pre-requisite	12 th Standard I	Mathematics	·					
Objectives of	To discu	iss and analyze th	ne concept of	gradient, divergence and				
the	curl and its properties.							
Course	• To be f	amiliar with Gre	een's, Gauss a	and Stoke's theorem in				
	vector in	tegrals.						
	• To find	the solution of	first order li	near partial differential				
	equation	s.		-				
	• To solve	e the ordinary di	fferential equa	ations by using Laplace				
	and Inve	rse Laplace Tran	sform.					
		-						
Course OutlineUnit – I: Differentiation of VectorsDifferentiation of vectors – Differential operators – Solenoid: Irrotational – Directional derivative – Gradient –Divergence and cu Formula involving operator ∇ . (Chapter 8: Pages: 329 - 363)Unit – II: Integration of Vectors Line integrals – Surface integrals – Volume integrals – Statement Gauss divergence, Green's, Stoke's theorems and its application verifications. (Chapter 8: Pages: 364 - 390, 395 - 418 excluding Green's theorem								
	space- problems	5) tial Difformatial]	Faustions					
Formation of partial differential equations Formation of partial differential equations by eliminating arbit constants and arbitrary functions – Solutions of standard types of order equations: $f(p,q) = 0, f(x,p) = g(y,q), f(x,p,q)$ 0, f(y,p,q) = 0, f(z,p,q) = 0: z = px + qy + f(p,q)								
Unit – IV: Laplace Transforms Definition – Laplace transforms of e^{at} , cos at, sin at, cosh at, si , $e^{at}f(t)$, $t^{n}f(t)$, $f'(t)$, $f''(t)$.								
	(Chapter 7: Pag	es: 289 - 298)						

	UNIT-V: Inverse Laplace transforms – Solving differential equations of second order with constant coefficients using Laplace transform.								
	(Chapter 7: Pages: 299 - 317 excluding simultaneous equations - problems)								
Extended	Questions related to the shows tonics, from various compatitive								
Extended	Questions related to the above topics, from various competitive								
Professional	(T 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1								
Component	(10 be discussed during the Tutorial hour)								
is apart of									
internal									
component									
only, Not to									
be included in the									
External									
Examination									
question paper)									
Skills acquired	Knowledge, Problem Solving, Analytical ability, Professional								
from this course	Competency, Professional Communication and Transferrable Skill								
Recommended	S. Narayanan, P. Kandhasamy, R. Hanumantha Rao and T.K.								
Text	Manickavasagam Pillai, Ancillary Mathematics, Volume II, S.								
	viswanathan Printers, Chennai 2010.								
Reference Books	1. P. Balasubramaniyam, K. G. Subramanian, Ancillary								
	Mathematics, Volume – I, Tata McGraw – Hill publishing								
	company limited, New Delhi, 1996.								
	2. P. Durai Pandian, S. Udaya Baskaran, Allied Mathematics,								
	2 D. Kondsomy and K. Thilogovethy, Allied Methometics volume								
	- I Volume – II S Chand & Company New Delhi 2004								
	4. Shanti Narayan, P.K. Mittal, Differential Calculus, S. Chand &								
	Co, New Delhi, 2005.								
	5. A. Singaravelu, Allied Mathematics, Meenakshi Agency,								
	Chennai, 2001.								
	6. P.R. Vittal, Allied Mathematics, Margham Publications,								
	Chennai, 1999.								

Course Learning Outcomes:

This course will enable the students to:

CO Number	CO Statement	Knowledge	
CO Nulliber	CO Statement	Level	
COI	discuss and analyze the concept of gradient, divergence	K2, K4	
COI	and curl and its properties.		
CO^{2}	recognize the importance of Green's, Gauss and Stoke's	K 1	
02	theorem in vector integrals.	K1	
CO3	find solution of first order linear partial differential	K5	

	aquations using Lagrange's method	
	equations using Lagrange's method.	
CO4	solve the ordinary differential equations by using	K3
	Laplace Transform.	IX.5
CO5	develop Fourier series of the periodic functions.	K6

	Mapping of CO with PO and PSO											
Programme Outcomes (PO)							Prog	Mean Scores of COs				
PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5	
2	2	1	3	2	2	1	3	3	3	2	2	2.17
2	3	2	2	3	2	3	2	3	2	3	2	2.42
3	3	2	2	3	3	3	2	3	2	3	2	2.58
3	3	2	2	3	1	3	3	2	3	2	1	2.33
3	2	1	2	1	2	2	2	2	2	1	3	1.92

Title of the	e Course	NUMERIC	AL ME	THODS with	n Applicati	ons -	II				
Paper Number		ELECTIVE - II									
Category Core		Year I OF		Credits	3	3 Cou					
		Semester II O		V		Cod	ode				
Instructional Hours		Lecture		ıtorial	Lab Practice		Total				
per week		4					4				
Pre-requis	ite	12 th Standard Mathematics									
Objectives	of the	> To evaluate derivatives using Newton's forward and backward									
Course		diffe	erences f	ormulae.							
		\succ To acquire the knowledge about evaluation of numerical									
		integration.									
		> To evaluate the solution of linear homogeneous difference									
		equations with constant coefficients.									
		equations									
Course Ou	ıtline	Unit I: Numerical Differentiation: Derivatives using Newton's Forward									
		and Backwa	rd Diffe	rence Formul	ae Derivati	ves us	ing St	tirling's Formula-			
		Derivatives	using	Divided Diffe	erence Form	mula-	Maxi	ima and Minima			
		using the above Formulae.									
		Chapter 7 :Section 7.1 to 7.4 & 7.6									
		Unit II: Numerical Integration: Trapezoidal Rule-Simpson's One-Third									
		Rule - Simp	son's Tl	ree-Eighth R	ule- Weddl	e's Ru	ıle.				
		Chapter 7	Section	7.9 & 7.13 to	7.15						
		Unit III: Difference Equations: Linear Homogenous and Non									
		Homogenous Difference Equation with constant coefficients- particular									
		integrals for	$a^x \cdot x^m$	sin kx. cos ka	$a^x F(x).$			1			
		Chapter 8 :Section 8.1 to 8.4 & 8.6									
		•									
		Unit IV: Numerical solution of Ordinary Differential Equations									
		(I order only	v): Tavlo	r's series met	hod- Picaro	1's me	thod.				
		Chanter 9:	Section	9596	ilou i louit		uno un				
		Chapter 31	Section	,							
		Unit V: Nu	merical	solution of Or	dinary Diff	erenti	al Equ	lations			
		(Lorder only	y). Enler	's Method_ M	Indified Fu	ler's N	/etho	d-Runge-Kutta			
		Method (Fo	urth Ord	er only)			100100	a range ratta			
		Chanter 9	Section	9799to91	1						
		Chapter 9	500101	<i>,</i> 10 <i>.</i>	L						

ski kaleko ka

Extended	Questions related to the above topics, from various competitive
Professional	examinations UPSC / TNPSC / others to be solved
Component (is a	(To be discussed during the Tutorial hour)
part of internal	
component only,	
Not to be included	
in the External	
Examination	
question paper)	
Skills acquired	Knowledge, problem solving, analytical ability, professional
from this course	competency, professional communication and transferable skill.
Recommended	P.Kandasamy, K.Thilagavathy (2003) Calculus of Finite differences &
Text	Numerical Analysis, S. Chand & Company Ltd., New Delhi-55.
Reference Books	1.B.D. Gupta.(2001) Numerical Analysis. Konark Pub. Ltd., Delhi
	2. M.K. Venkataraman. (1992) Numerical methods for Science and
	Engineering National Publishing Company, Chennai.
	3. S. Arumugam. (2003) <i>Numerical Methods</i> , New Gamma Publishing,
	Palayamkottai.
	4. H.C. Saxena. (1991) Finite differences and Numerical analysis
	S.Chand & Co., Delhi
Website and	https://ocw.mit.edu/courses/22-15-essential-numerical-methods-fall-
e-Learning Source	2014/pages/syllabus/
	https://ocw.mit.edu/courses/18-330-introduction-to-numerical-
	analysis-spring-2004/

Course Learning Outcome (for Mapping with POs and PSOs)

Students will be able to

CLO1: After studied unit -1, the student will be able to evaluate derivatives by applying Newton's forward and backward differences formulae.

CLO2: After studied unit -2, the student will be able to evaluate integrations by applying the trapezoidal rule, Simpson"s rules, and Weddle"s rule.

CLO3: After studied unit -3, the student will be able to find a complete solution to linear difference equations.

CLO4: After studied unit -4, the student will be able to estimate approximate numerical solutions of ordinary differential equations by Euler, Picard and Taylor.

CLO5: After studied unit -5, the student will be able to estimate approximate numerical solutions of ordinary differential equations by Runge-Kutta methods.

			PSOs						
	1	2	3	4	5	6	1	2	3
CL01	3	1	3	2	4	-	3	2	1
CLO2	2	1	3	1	4	-	3	2	1
CLO3	3	1	3	1	2	-	3	2	1
CLO4	3	1	3	2	4	-	3	2	1
CLO5	3	1	3	2	4	-	3	2	1

ski kaleko ka