THIRUVALLUVAR UNIVERSITY

Serkkadu

Vellore – 632115

Degree of Bachelor of Science CHOICE BASED CREDIT SYSTEM

Syllabus for

B.Sc., STATISTICS (SEMESTER PATTERN)

(For Candidates admitted in the Colleges affiliated to Thiruvalluvar University from 2023-2024 onwards)

SCHEME OF EXAMINATIONS

The scheme of examination for different semesters shall be as follows: Course structure under OBE (Semester-wise Details)

Branch: STATISTICS

(For the students admitted from the Academic year 2023-2024 onwards)

					MAR	RKS	TOTA
PAR T	COURSE	TITLE OF THE PAPER	HOUR S	CREDI T	CI A	UE	L
		SEMESTER – II					
I	Language	Tamil – II	6	3	25	75	100
II	Language	English – II	6	3	25	75	100
Ţ	Core Theory – III	Matrix and Linear Algebra	4	4	25	75	100
T	Core Theory - IV	Distribution Theory	4	4	25	75	100
I	Core Practical-1	Practical – I Data Analysis Using MS – Excel)	2	2	25	75	100
	Elective - II	Real Analysis	4	3	25	75	100
	** SEC – 2	Basic Computers(MS Excel)	2	2	25	75	100
IV	** SEC – 3	Quantitative Aptitude	2	2	25	75	100
NO. OF	COURSES – 8	TOTAL	30	23	200	600	800

SEMESTER-II

Title of	the Course	Matrix a	nd I	Line	ear Algeb	ra			
Paper	Number					Core III			
Category	Core	Year	I	[Credits		Course		
		Semester	I	I	-		Code		
Instruct	ional Hours	Lecture	e	7	Tutorial	Lab Pra	ctice	Total	
pei	r week	4						4	
	equisite				Basic vecto	r and matri	x theory		
Objectives	of the		ı		main objec				
	ourse	1. To study						overse of matrices	
					ucture of or	_		y matrices	
					ariance prop			1	
		4. To kno polynomia		a to	apply the co	oncepts of v	ector sp	pace and matrix	
		porynomia	115.						
Cours	e Outline	Unit I M	latrice	es-T	ranspose-C	onjugate tra	inspose-	Reversal law for	
								a matrix, Inverse of	
					nd Non -Sir				
								f two matrices.	
			-		nverse and t te transpose	-	matrix,	Commutatively of	
					matrix, Ecl		Rank of	f transpose	
								Invariance of rank	
			•			•		Normal form,	
		Equivalent							
		Unit-IV						asis of a vector space	
								pendent system, Row ks, Rank of Sum and	
		Product of			Equality of 1	tow and co.	iuiiiii Taii	ks, Kank of Sum and	
		Unit-V Matrix polynomials, Characteristic roots and vectors, Relation							
		between characteristic roots and characteristic vectors, Algebraic and Geometric multiplicity, Clayey- Hamilton theorem.							
		Geometric	multıp	olicit	y, Clayey- F	lamilton the	orem.		
Extended	Professional	Ouestions	relate	ed	to the abo	ve topics.	from va	arious competitive	
		_						GATE / TNPSC /	
	nponent only,								
	ncluded in the				ring the Tut	orial hour)			
External Ex					υ	,			
question par	per)								
	ired from this	Knowle	edge,	Pro	blem Solvi	ng, Analy	tical ab	ility, Professional	
CO	ourse	Compete	ency,	Pro	fessional Co	mmunicati	on and T	Transferrable Skill	
Recomm	nended Text	1. Va	sishth	ıa.A	.R (1972) :	Matrices	, Krishna	aprakashanMandir,	
		Me	erut.						
		IVIC	orut.						
Refere	nce Books	1. Sh:	anthin	ara	yan, (2012): A Text	Book of	Matrices.	
	00110						OI OI		
		S.Chand& Co, New Delhi							
		2. M.L.Khanna (2009), Matrices, Jai PrakashNath& Co							
	site and	e-boo	ks, tut					ses on the subject	
e-Learn	ing Source			<u>h</u>	ttps://sample	s.jbpub.com	/9781556	<u>5229114/chapter7.pdf</u>	

https://www.vedantu.com/maths/matrix-rank
https://textbooks.math.gatech.edu/ila/characteristicpolynomial.html
https://www.aitude.com/explain-echelon-form-of-amatrix/

Learning Outcome (for Mapping with POs and PSOs)

Students will be able to

- **CLO-1** Do basic operations of matrices
- CLO-2 Understand various transactions of matrices and its applications
- **CLO-3** Understand various properties of matrices
- **CLO-4** Able to understand vector space and its applications
- **CLO-5** Able understand Eigen vector and its applications
- **CLO-6** Able understand vector and matrix applications

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9
CLO1	S	S	M	M	M	S	M	S	M
CLO2	S	S	S	S	M	S	M	S	M
CLO3	S	S	S	M	S	M	M	S	S
CLO4	S	S	S	M	S	S	S	S	M
CLO5	S	S	M	M	M	S	S	S	M
CLO6	S	S	M	S	M	S	S	M	M

CLO-PSO Mapping (Course Articulation Matrix) S-Strong, M-Medium, W-Weak

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weight age	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Level of Correlation between PSO's and CO's

Title of	the Course	Distribu	tion T	heorv						
	Number	Distribu	<u> </u>		Core IV					
Category	Core	Year	I	Credits		Course				
		Semester	II			Code				
		Semester	11			Couc				
Instructi	ional Hours	Lecture	2	 Tutorial	Lab Prac	ctice	Total			
	· week	4					4			
	equisite		Calculus							
Objectives	of the	The main objectives of this course are:								
	ourse	1.To learn discrete distributions								
	, d1 5 C	2. To learn continuous distributions								
		3. to under	stand D	istributions g	generated fro	m mathen	natical functions			
				stribution and		es				
		5. understa	and abou	ıt sampling d	listributions					
Cours	e Outline	Unit I								
Cours	c Outilite		istributio	n – moments,	recurrence re	elation, mea	n deviation, mode,			
							mulants. Fitting of			
							mode, recurrence			
				-			nction, cumulants. tribution – m.g.f.,			
		cumulants.	r 0188011	uisuiouioii.	Negative on	nonnai uisi	inoution – m.g.r.,			
			eometri	distribution -	- lack of men	nory, mome	ents, m.g.f Hyper			
		_					tion to Binomial,			
		recurrence relation – Multinomial distribution – m.g.f., mean and variance. Unit III Normal Distribution – chief characteristics of the normal								
		distribution and normal probability curve, mean, median, mode, m.g.f.								
				_	-		an deviation, Area			
				e of Normal I	_		ŕ			
		Unit-IV Exponential distribution – m.g.f., characteristic function,								
		memory less property – Gamma distribution – m.g.f., cumulants and central								
		moments, reproductive property – Beta distribution – First kind and second								
		kind – constants. Unit-V Functions of Normal random variables leading to t, Chi-square								
		and F-distributions (derivations, properties and interrelationship)								
Extended	Professional	Questions	related	to the abo	ve topics,	from vari	ous competitive			
Component	(is a part of	examinatio	ons UPS	C / TRB / N	ET / UGC -	- CSIR / G	SATE / TNPSC /			
internal cor	mponent only,	others to b	e solve	l						
Not to be in	ncluded in the	(To be disc	cussed o	luring the Tu	torial hour)					
External Ex	amination									
question pap	oer)									
Skills acqu	ired from this	Knowle	dge, Pi	oblem Solv	ing, Analyt	ical abilit	ty, Professional			
CO	ourse	Compete	ency, Pr	ofessional Co	ommunicatio	on and Tra	nsferrable Skill			
Recomm	nended Text			•			s of Mathematical			
				ultan Chand a	·		77) An Outline of			
				_		_	77) An Outline of ta.			
		Statistical Theory, Vol I, 6/e, World Press, Calcutta. 3. Hogg, R.V. and Graig, A.T. (1978): Introduction to Mathematical								
		Statistics, A/e, Mc.Graw Hill Publishing Co.Inc., New York.								
		4.								
Refere	nce Books	1. Mo	od Ar	Gravbill E	Δ and Rose	D.C. (107	4): Introduction to			
Keiele	HCC DOOKS			of Statistics, 3			•			
					,	, = . •	·			

Learning Outcome (for Mapping with POs and PSOs)

Students will be able to

CLO-1 identify discrete distributions appeared in real life situations

CLO-2 understand some continuous distributions and its applications

CLO-3 connection between some of the real values mathematical functions and its application in distribution theory

CLO-4 understand normal distribution and its properties

CLO-5 understand sampling distributions and its applications in real life

CLO-6 identify probability models in real data and estimate population parameters

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9
CLO1	S	S	M	M	M	S	M	S	M
CLO2	S	S	S	S	M	S	M	S	M
CLO3	S	S	S	M	S	M	M	S	M
CLO4	S	S	S	M	S	S	S	M	M
CLO5	S	M	M	M	M	S	S	S	M
CLO6	S	M	M	S	M	S	S	S	M

LO-PSO Mapping (Course Articulation Matrix) S-Strong, M-Medium, W-Weak

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weight age	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Level of Correlation between PSO's and CO's

Title of	the Course	Real Anal	vsis								
	Number	TCai miai	/	Clective – II	(Discipline	e specif	fic)				
Category	Core	Year	I	Credits	3	Cours					
		Semester	II			Code	e				
Instructi	ional Hours	Lecture	7	Futorial	Lab Pra	ctice	•	Total			
per	week	4		-				4			
Pre-r	equisite	Number theory and Arithmetic									
Objectives	of theCourse	The main objectives of this course are:									
		1		tudy the bas	-						
		2		now the stru	icture of the	e real s	equence	and its			
		3		ergence earn series a	nd its conv	ergence	e				
		4		earn the limi		_		ve of real			
				ed functions							
		5	. To k	now and to	apply the R	iemanı	n integra	ation			
Cours	e Outline	Unit I									
Cours	e Outilile		ations	on sets,	Functions	Real	value	d functions,			
		Орег	ations	on sees,	i unctions,	rtour	varae	a ranctions,			
		Equivalence,	Coun	tability, Re	al Number	s, Can	tor set,	Least Upper			
		D 1 C	.	D.							
		Bounds, Gre	atest L	ower Bound							
		Unit II	Definition	on of Seque	nce. Subsec	uence.	Limit o	of a sequence,			
		Convergent a	nd Div	ergent seque	nces, Oscill	ating se	equence,	Bounded and			
		Monotone sequences, Operations on convergent sequences, Limit Infimum,									
		Limit Supremum. Unit III Definition of Series, Convergent and Divergent series, series with									
		nonnegative terms, alternating series, conditional convergence, absolute									
		convergences and test for absolute convergence									
		Unit-IV Limit of a function on the real line, Increasing and Decreasing									
		functions, C	Continuo	ous function	, Derivative	s, Deri	vative a	nd continuity,			
		Rolle's Theor						1 T			
		Unit-V						r and Lower integrability,			
				-	_	•		ole, Properties			
		of Riemann						· · · · ·			
Extended	Professional				_			_			
	(is a part of			C / TRB / N	ET / UGC -	– CSIR	(/ GAT	E / TNPSC /			
	mponent only,										
	ncluded in the	(To be discu	ssed du	iring the Tut	corial hour)						
External Ex											
question pap		77 1 1		11 01			1 111	D 6 : 1			
_	ired from this	_			-		=	Professional			
	ourse			fessional Co							
Kecomm	nended Text		_	R(1976) :	wiethods	oi Kea	u Analy	sis, Oxiora			
		&IBI	I.								
Refere	nce Books	1. Shant	hi naray	yan, (2012)	: Real Anal	ysis, S	.Chand&	Co, New			
		Delhi									
				(2017), Prin	ciples of Ma	themati	ical Anal	ysis, 3rd			
		Editio	on, McC	Gra ⊽ -Hill							
L		<u> </u>									

Website and e-Learning Source	e-books, tutorials on MOOC/SWAYAM courses on the subject https://tutorial.math.lamar.edu/classes/calci/thelimit.aspx
	https://www.mathsisfun.com/calculus/derivatives-
	introduction.html
	https://www.math.ucdavis.edu/~hunter/m125b/ch1.pdf
	https://math.hmc.edu/calculus/hmc-mathematics-
	calculus-online-tutorials/single-variable-
	<u>calculus/taylors-theorem/</u>
	http://www.ms.uky.edu/~droyster/courses/fall06/PDFs/
	Chapter06.pdf

Course Learning Outcome (for Mapping with POs and PSOs)

Students will be able to

- CLO-1 do basic operations of sets and understand set functions
- CLO-2 understand sequence and its convergence
- CLO-3 understand series and its convergence
- CLO-4 identify real valued functions and its discontinuity
- **CLO-5** understand integration concepts
- CLO-6 understand probability functions as set functions and get knowledge on discrete and continuous nature of it

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9
CLO1	S	S	M	M	M	S	S	S	M
CLO2	S	S	S	S	M	S	S	S	M
CLO3	S	S	S	M	S	M	S	S	M
CLO4	S	S	S	M	S	S	S	S	M
CLO5	S	S	M	M	M	S	S	S	M
CLO6	S	M	M	S	M	S	S	S	M

CLO-PSO Mapping (Course Articulation Matrix) S-Strong, M-Medium, W-Weak

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weight age	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Level of Correlation between PSO's and CO's

Title of	the Course	(Data Analysis Using MS – Excel)								
Paper	Number		CORE PARACTICAL-1							
G 4			I	G 114	2	Course				
Category	Core	Semester	II	Credits	2	Code				
Instruct	Instructional Hours		7	Tutorial	Lab Practice		Total			
per week		-		-		2	2			

Objectives:

- 1. To enable the students to gain computer practical knowledge about the concepts of statistics.
- 2. To apply the measures of descriptive statistics and probability in real life situations using MSexcel
- 3. To provide practical knowledge in random variables, probability distributions, expectation, moment generating function, matrices, Rank of matrices.

Practical Exercises:

- 1. Computation of Measures of Central Tendency for discrete data using MS Excel (Mean, Median, Mode, Geometric Mean, Harmonic Mean)
- 2. Computation of Measures of Central Tendency for Continuous data using MS Excel (Mean, Median, Mode, Geometric Mean, Harmonic Mean)
- 3. Computation of Measures of dispersion for discrete data using MS Excel ()
- 4. Computation of Measures of dispersion for Continuous data using MS Excel ()
- 5. Graphical Presentation of data (Histogram, Frequency Polygon, Ogives) Using MS Excel.
- 6. Computation of Co-efficient of Skewness and Kurtosis Karl Pearson's and Bowley's datausing MS Excel
- 7. Fitting of Binomial distribution Direct Method using MS Excel.
- 8. Fitting of Poisson distribution Direct Method using MS Excel.
- 9. Fitting of Exponential distribution Direct Method using MS Excel.
- 10. Problems based on univariate probability distributions.
- 11. Problems based on probability.
- 12. Calculating Inverse matrix in Excel.
- 13. Calculating Transpose matrix in Excel.
- 14. Calculating Rank matrix in Excel.

Note:

Question Paper Setting:

5 questions are to be set without omitting any unit. All questions carry equal marks. Any 3 questions are to be answered in 3 hours duration out of 5.

Examinations Distribution of Marks

University Examinations (Computer Practical) 60 MarksCIA (Including Practical Record) 40

Marks

Total 100 Marks