

THIRUVALLUVAR UNIVERSITY SERKKADU, VELLORE-632115

M.Sc. Biotechnology

UNIVERSITY DEPARTMENT
CURRICULUM AND SYLLABUS

FROM THE ACADEMIC YEAR 2023 - 2024

Tamil Nadu State Council for Higher Education (TANSCHE)

M.Sc. DEGREE COURSE IN BIOTECHNOLOGY Choice-Based Credit System REVISED REGULATIONS AND SYLLABUS (w.e.f. 2022-2023) TANSCHE COMPLIANCE

Preamble:

The learning outcome is designed to help learners understand the objectives of studying biotechnology that is, to analyze, appreciate understand the use of the living system and organisms to develop or make products. Biotechnology is a fast-growing field of science where biological systems are used in diverse applications in the areas of environment, food industry, fermentation, etc. Interdisciplinary life science provides high-quality education and performs cutting-edge technological research. The fundamental research as well as in modern industrial enterprise patents, copyrights and various regulatory processes to make their efforts a success. In the increasingly globalized society, it is important that the younger generation especially the students are equipped with knowledge, skills, mindsets and behaviors so that they become important contributors to the development of society. Biotechnology is an interdisciplinary field that brings together knowledge from diverse fields such as cell biology to molecular biology, biochemistry to biophysics, genetic engineering to stem cell research, bioinformatics to genomics-proteomics, environmental biology to biodiversity, microbiology to bioprocess engineering, from bioremediation to Insilco drug discovery and so on. The proposed credit-based curriculum and grading system will even add much more to the existing interdisciplinary nature of biotechnology and will also offer many courses to the other branches of life science. The Choice Based Credit System (CBCS) curriculum for Biotechnology at the postgraduate level has now been developed into a new system called Learning Outcome Curriculum Framework (LOCF) under the recommendations and guidance of the University Grants Commission (UGC). The LOCF approach first envisioned the programme learning outcomes of the M.Sc. program in Biotechnology as well as the learning outcomes of the courses being taught under this programme, keeping in view the graduate attributes of the subject. A variety of learning assessment tasks has been included in the curriculum. The new Curriculum of M.Sc Biotechnology offers essential knowledge and technical skills. Students would be trained in all areas of biotechnology with significant interdisciplinary components. The theory and experimental knowledge suit the need of academics and industry. The curriculum will motivate the students to pursue research and entrepreneurial skill development.

Introduction:

The higher education institutions all over the globe are in grip of this urgent task and India needs to keep pace with future developments. The recent development in the field of biotechnology as rapid growth and the establishment of biotechnological industries. This has resulted in great demand for trained manpower in this field and has opened new career opportunities for the young generation of students to acquire skills, training and knowledge to enhance

their thinking, comprehension and application abilities and prepare them to compete, succeed and excel globally. Sustained initiatives are required to reform the present higher education system for improving and upgrading the academic resources and learning environments by raising the quality of teaching and standards of achievements in learning outcomes. The academic research into innovations for practical use in society and economy, promoting efficient and transparent governance and management of the higher education system, enhancing the capacity of the higher education system to govern itself through coordinated regulatory reform and increasing both public and private sector investment in higher education, with special emphasis on targeted and effective equity-related initiatives.

Learning Outcomes based approach to Curriculum Planning:

The Learning Outcomes based approach to Curriculum planning aims to factor in on the aptitude, interests and strengths of the students during their progress through the coursework and at the same time focus on overall student attainment. The main objective of the learning outcomes based framework is to better equip the students in their pursuit of knowledge, with the required employability skills, innovation in research and entrepreneurship skills. The course is so designed with practical work that will help students to apply their theoretical knowledge in experimenting and exploring. The curriculum envisions that the student, once graduates as specialists in a discipline, have an important role to play in the newer developments and innovations in the future in the subject for the advancement of the discipline.

Graduate Attributes in Biotechnology:

Graduate attributes are the high-level qualities, skills and understandings that a student should gain as a result of the learning and experiences. They equip students and graduates for lifelong personal development, learning and to be successful in society. Students will be equipped to be active citizens both nationally and globally. The students graduating in biotechnology should also develop excellent communication skills both in the written as well as spoken language which are a must for them to pursue higher studies from some of the best and internationally acclaimed universities and research institutions spread across the globe. The graduate attributes reflect both disciplinary knowledge and understanding, generic skills, including global competitiveness all students in different academic fields of study should acquire/attain and demonstrate. Some of the characteristic attributes that a graduate should demonstrate are as follows

- Leadership Readiness
- Moral and ethical awareness/reasoning.
- Multicultural Competence.
- Life-long Learning.
- Communication Skills.
- Critical thinking.
- Problem-solvingng.
- Research-related skills.

- Scientific reasoning.
- Self-directed learning.
- Disciplinary knowledge.

Qualification Descriptors:

Upon successful completion of the course, the students receive an M.Sc. degree in Biotechnology. Biotechnology postgraduates of this department are expected to branch out into different paths of seeking advanced research-based knowledge, professional employment, or entrepreneurship that they find fulfilling. They will be able to demonstrate knowledge as well as skills in diverse fields of Biotechnology. This will provide a foundation, which shall help them to embark on research careers by attaining doctoral positions in coveted institutions, as well as securing employment in research projects in industry or institutes. Besides research, they can get suitable teaching positions in Colleges and Universities as Assistant professors after qualifying National Eligibility Test (NET). It is expected that besides the skills specific to the discipline, the wider life skills of analysis, logical reasoning, scientific aptitude, communication skills, research and life ethics, and moral values will be inculcated in the students. The list below provides a synoptic overview of possible career paths provided by postgraduate training in Biotechnology:

- Biotechnology entrepreneurship
- Patents and Law
- Scientific Writing and Editing
- Document preparation and publication
- Research
- Industry
- Teaching
- Administration and Policy Making
- Scientific Communication

Teaching-learning process

The Learning Outcomes-Based Approach to curriculum planning and transaction requires that the teaching-learning processes are oriented towards enabling students to attain the defined learning outcomes relating to the courses within a programme. The outcome-based approach, particularly in the context of undergraduate studies, requires a significant shift from teacher-centric to learner-centric pedagogies, and from passive to active/participatory pedagogies. Planning for teaching therein becomes critical. Every programme of study lends itself to a well-structured and sequenced acquisition of knowledge and skills. Practical skills, including an appreciation of the link between theory and experiment, will constitute an important aspect of the teaching-learning process. Teaching methods, guided by such a framework, may include:

• Classroom Teaching for intensely information-based topics. This is a very regular feature of all the courses in Biotechnology.

- PowerPoint slides for topics that involve information and use of PowerPoint presentations are also made whenever the lectures are to be summarized in a crisp and point-wise manner to highlight salient/important conclusions from the topics.
- Classroom Discussions are a regular feature while teaching. The students are drawn into impromptu discussions by the teacher during the process of teaching.
- Video Displaying, both real-time and animations, are used for topics that require 3D dimensional viewing of
 the biological mechanisms to drive the point home. These have proved to be very helpful while teaching
 concepts of molecular biology like DNA replication, transcription and translation.
- Model Making is also used especially for understanding and building a perception of the students.
- Laboratory Practical are an integral part of every course included in the PG programme in Biotechnology. The is also a daily affair for PG students of Biotechnology.
- **Problem Solving** is encouraged during the laboratory work.
- Group Activity as well as discussions with the laboratory supervisor/ among the students themselves/ Mentor
 is also encouraged during laboratory work.
- **Project Work** is included in the programme where students work individually or in groups to design experiments to solve/answer a problem suggested by the Mentor or identified by the students in consultation with the Mentor. The students are mentored regularly during the duration of the project.
- Presentations by the Students are regularly done. The students are mentored in the presentation of data, interpretation of data and articulation with the students/teachers/Research Scholars during their presentation.
- Presentations by Experts in different specialties of Biotechnology are arranged to broaden the horizons of the students.
- Interaction with Experts is also encouraged during/after presentations to satisfy/ignite the curiosities of the students related to developments in the different areas of Biotechnology.
- Visit to Industries/Laboratories related to Biotechnology like fermentation, food, pharmaceuticals; diagnostics etc. are organized to acquaint the students with real-life working environments of the professional biotechnologist with a view to broadening their perspective on the subject of Biotechnology.

Assessment methods

The students of PG Biotechnology program must achieve the desired results in terms of the learning outcomes to be professionally sound and competitive in a global society. Achieving the desired learning outcomes is also imperative in terms of job employment leading to a happy and prosperous individual further leading to a happy and prosperous family and thereby a happy and prosperous society or nation. The assessment tasks are pivotal to getting authentic feedback for the teaching-learning process and mid-course corrections and further improvements in the future. The assessment tasks are carried out at various stages of the duration of the PG Biotechnology programme like Mid-term assessments, End-term assessments, Semester examinations, Regular assessments, viva-voce, etc. The assessment tasks are listed below:-

- Short-Answer Questions during term and semester examinations are used to assess the ability of the student
 to convey his thoughts in a coherent way where prioritization of the information in terms of their significance
 is tested.
- **Problem Solving questions** are generally given during the laboratory work.
- Surprise Quizzes are regularly used during continuous assessment while the teaching-learning process is
 continuing which prepares the student to quickly recall information or quickly analyze a problem and come up
 with proper solutions.
- Impromptu Opinions on biotechnological problems are sought from student during regular teaching-learning which help them to think quickly in a given context. This help build their ability to come up with solutions to problems that the students might not have confronted previously.
- **Data Interpretation** is also another assessment task that is used to develop the analytical skills of the students. This assessment is used during laboratory work as well as during project work.
- Analytical Skills are assessed during work related to several experiments like enzyme kinetics, growth of bacteria and Bacteriophages, and mutation frequencies.
- Paper/ Project presentations are used to assess the articulation skills of the student. These are carried out both during the duration of the teaching-learning processes as well as during end-Semester examinations.
- Report Writing is used to assess the keenness of the students for details related to Biotechnology while
 visiting laboratories/industries as students invariably are required to submit a report after such visits.
- Assignment Writing is used to assess the writing abilities of the students during midterm vacations.
- Viva-voce during the laboratory working hours and during laboratory, examinations are used to assess the
 overall knowledge and intelligence of the students.

Key Words:

Biotechnology, Teaching, Learning outcomes, Curriculum, Curriculum Framework, Programme outcomes, Course outcomes, PG Programme, Postgraduate programme, Teaching-learning processes, Assessment Tasks, Evaluation Tasks, Online Courses, MOOCS, SWAYAM, UGC, India, Higher Education Institutions.

1. CONDITIONS FOR ADMISSION:

A Candidate with a Bachelor's Degree in Science in the disciplines of Biotechnology, Biology, Botany, Zoology, Microbiology, Genetics, Chemistry, Biochemistry, Physics, Agriculture from this University B.E/ B.TECH (Biotech), B.V.Sc, MBBS, BDS or any area of Biological Sciences / Agriculture and allied sciences; Veterinary and allied sciences or an examination of some other University accepted by the Syndicate as equivalent thereto shall be for the M.Sc Degree Examination of this University after a course of two academic years in an Affiliated Colleges of this University.

2 DURATION OF THE COURSE:

The duration of the course is for two academic years consisting of four semesters.

3. STRUCTURE OF THE COURSE

The course organized on semester basis with a total of four semesters. In the first, second and third semesters, there are three (core) theory papers (9 hrsperweek), one Core Practical (15 hrsperweek) and Two elective optional papers (4 hrsperweek), persemester and in the four them ester, there are only one core theory paper (Research Methodology) (4 hrsperweek), acore project dissertation work constituting atotal of 20 hrsperweek, two electives (4 hrsperweek), and a Softskill program (2 hrsperweek).

Elective paper: Each student shall opt for a comprehensive, interactive course with one of the faculty member. The topic of specialization and course content will be determined by the department/ course advisor.

Core Practical Laboratory: Independent practical shall be held under each component. It is recommended that the practical training be organized as an exercise rather than simple demonstration. The students must actually perform the experiments.

4. ELIGIBILITY FOR THE AWARD OF DEGREE:

A candidate shall be eligible for the award of the degree onlyif he/she has undergone the prescribed course of study in a college affiliated to the University for a period of not less than two academic years, passed the examination of all the four semesters prescribed earning minimum of 91 credits and fulfilled such conditions as have been prescribed therefore.

A candidate shall be eligible for the award of the degree only if he/she has undergone the prescribed courses on Soft Skills and internship in addition to the courses prescribed by the respective Board of Studies for the subject of the Masters Degree. For two years Master's Degree Programme, a candidate shall undergo a minimum of 4 courses (4 x 2=8 credits) from the courses on Soft skills.

A two year Master's Degree student shall undergo 4-6 weeks (2 credits internship during the summer vacation of the First year and submit a report in the beginning of third semester. The report will be evaluated in third semester and the marksforwardedtotheUniversityalongwiththird semesterinternalassessment(CIA) marks.

5. EXAMINATIONS:

There shall be four semester examinations: first semester examinations at the middle of the first academic year and the second semester examination attheendofthe first academic year. Similarly, the third and four the semester examinations shall be held at the middle and the end of the second academic year, respectively. Practical examination shall be conducted independently at the end of even semesters. For practical examination, a single comprehensive) (covering different courses offered during that semester) practical examination (6hrsperday) be held for each component of the core practical at the end of even semesters.

Examinations for the courses on soft skills will be held along with the semester examinations of the core and elective courses. There is nowritten examinationforinternship. Astudentshallsubmitareportaftercompleting the summer internship. The report will be evaluated by two examiners within the Department of the college/institution.

6. COURSE OF STUDYAND SCHEME OF EXAMINATIONS (2023-24):

FIRST SEMESTER

	Course			ts	Exam	Max. Marks	
S.No.	Components	Name of Course	Inst. Hours	Credits	HRS	CIA	External
1	Core Paper-1	Biochemistry	6	4	3	25	75
2	Core Paper-2	Microbiology	5	3	3	25	75
3	Core Paper-3	Molecular Cell Biology	5	3	3	25	75
4		Practical – I (A) Biochemistry (B) Microbiology (C) Molecular Cell biology	6	4	4	25	75
5	Elective-I	Bioinstrumentation	5	3	3	25	75
6	Elective-II	Pharmaceutical Biotechnology	5	3	3	25	75
			32	20			
	Total Credits: 20						

SECOND SEMESTER

	Course Components	Name of Course	. %	Credits	Exam	Max. Marks	
S. No.			Inst. Hours		HRS	CIA	External
7	Core Paper-4	Immunology	5	4	3	25	75
8	Core Paper-5	Molecular Genetics	4	3	3	25	75
9	Core Paper-6	Genetic Engineering	4	3	3	25	75
10		Practical – II (A) Immunology (B) Molecular Genetics (C) GeneticEngineering	5	4	4	25	75
11	Elective Paper-3	Regulatory affairs and Industrial standards (or) Enzymology	3	3	3	25	75
12	Elective Paper-4	Environmental Biotechnology	3	3	3	25	75
13	Skill	Vermiculture Basics in diagnostic lab technology Food Biotechnology	4	2			
		Human Rights	2	2			
		MOOC Course	-	2			
		Total	30	26			

THIRD SEMESTER

			. 0	ts		Max	. Marks
S. No.	Course Components	Name of Course	Inst. Hours	Credits	Exam HRS	CIA	External
14	Core Paper-7	Bioinformatics	6	5	3	25	75
15	Core Paper-8	Plant and Animal Biotechnology	6	5	3	25	75
16	Core Paper-9	Bioprocess Technology	6	5	3	25	75
17	Core Paper-10 Practical-III	Practical – III (A) Bioinformatics (B) Plant and Animal Biotechnology (C) BioprocessTechnology	6	4	6	40	60
18	Elective Paper-5	Nano Biotechnology(OR)Molecular Developmental Biology	3	3	3	25	75
19	NME II	Basics tools in Biotechnology Environmental Sciences Basics in Pharamaceutical Biotechnology	3	2			
20	**Internship	Internship in Industries to Biotechnology Field (food / clinical trial/ dairy/ aqusciences, pharmaceutical)CSIR/DBT/DST research laboratories	0	2	-	-	100
		Total	30	26			

 $^{{\}bf **} Internship will be carried outduring the summer vacation of IIS emester and the report will be evaluated by two examiners within the Department of the college/institution.$

FOURTH SEMESTER

C M		N. CC	s s	o o	ts	ts	्र इ	E IIDG	N	Iax. Marks
S. No.	Course Components	Name of Course	Inst. Hours	Credits	Exam HRS	CIA	External			
21	Core Paper-11	Research Methodology	6	5	3	25	75			
22	Core Paper-12	Biostatistics	6	5						
23	Project Work & Vive Voce	Dissertation	10	7		60	240 (40-work book, 150 Dissertation +50- Viva)			
24	Elective Paper-6	Stem Cell Biology (or) Bioethics, Human Rights and Social Issues	4	3	3	25	75			
25	Skill Enhancement		4	2						
26	Extension Acitivity		-	1						
		Total	30	23						

Core Paper-1 BIOCHEMISTRY

Paper – 1						
Title of the paper BIOCHEMISTRY Subject code:				le:		
Category of the Course	Year	Semester		Credits		
Core Paper	1 st	1	st	6		

Learning Outcome:

The paper imparts a thorough knowledge on the basics of all the Biochemical concepts, Metabolic reactions and its regulation. The student will get to understand the core concepts of metabolism and physiological processes of the body in both healthy and disease state.

Course outcomes:

At the end of the Course, the Student will be able to:

CO-1	To understand the basics of pH and related principles and carbohydrate metabolism.
CO-2	To provide basic knowledge about lipid metabolism and related significance.
CO-3	To enlighten the students on Bio-energetics and Biological oxidation pathways.
CO-4	To update the knowledge on Amino acids and Protein.
CO-5	To assess and appraise the role of Nucleic acids.

SYLLABUS Core Paper-1 BIOCHEMISTRY						
Unit	Content	Hours	COs	Cognitive level		
I	pH, pK . acid, base .Buffers- Henderson- Haselbach equation, biological buffer system –Phosphate buffer system, protein buffer system, bicarbonate buffer system, amino acid buffer system and Hb buffer system. Water, Carbohydrates: Nomenclature, classification, structure, chemical and physical properties of carbohydrates. Metabolisms: glycogenesis, glycogenolysis, gluconeogenesis, pentose phosphate pathway	10	CO1	K1&k2		
II	Lipids: Nomenclature, classification, structure, chemical and physical properties of fatty acids.	10	CO2	K1,K2 & K3		

	Metabolisms: biosynthesis of fatty acids, triglycerols,			
	phospholipids, glycol lipids. Cholesterol biosynthesis,			
	bile acids and salt formation. Eicosanoids,			
	sphingolipids and steroid hormones.			
	Bioenergetics - Concept of energy, Principle of			
	thermodynamics, Relationship between standard free			
	energy and Equilibrium constant, ATP ads universal			
	unit of free energy in Biological systems. Biological			
	oxidation: Electron transport chain, oxidative			
111	phosphorylation, glycolysis, citric acid cycle, cori.s	10	CO3	V1 V2 0 V2
Ш	cycle, glyoxalate pathway. Oxidation of fatty acids-	10		K1,K2 & K3
	mitochondrial and peroxisomal β-oxidation, alpha and			
	beta oxidation, oxidation of unsaturated and odd chain			
	fatty acids, ketone bodies. Photosynthesis, urea cycle,			
	hormonal regulation of fatty acids and carbohydrates			
	metabolisms, Mineral metabolism			
	Amino acids and Protein: Nomenclature,			
	Classification, structure, chemical and physical		CO4	
IV	properties of amino acids and proteins. Metabolisms:	10		K1,K2 & K3
1 V	Biosynthesis of amino acids. Degradation of proteins,	10		K1,K2 & K3
	nitrogen metabolisms and carbon skeleton of amino			
	acids. Over all in born error metabolisms			
	Nucleic acids: Nomenclature, Classification,			
	structure, chemical and physical properties of purine			
V	and pyrimidines. In de novo and salvage synthesis of	10	CO5	K1,K2 & K3
•	purines, pyrimidine bases, nucleosides and		COS	K1,K2 & K3
	nucleotides. Catabolisms of purines and pyrimidines			
	bases. Synthetic analogues of nitrogenous bases			

Reference books:

- Philip Kuchel, Simon Easterbrook-Smith, Vanessa Gysbers, Jacqui M. Matthews, 2011. Schaum.s Outline of Biochemistry, Third Edition (Schaum.s Outline Series), McGraw-Hill.
- Sathyanarayana.U and U.Chakrapani., 2011. Biochemistry. Books and Allied private limited, Kolkata.
- Jeremy M. Berg, John L. Tymoczko, Lubert Stryer, 2010. Biochemistry, Seventh Edition, W. H. Freeman.
- Albert Lehninger, David L. NelsonVoet Donald, Judith G.Voet and Charlotte W.Pratt., 2008. Principles of Biochemistry. John Wiley and sons, Inc., New Jersey.
- Michael M. Cox, 2008. Lehninger Principles of Biochemistry, Fifth Edition, W. H. Freeman publishers.

Useful web sites:

- mcdb-webarchive.mcdb.ucsb.edu/.../biochemistry/.../website-tourf.htm
- www.biochemweb.org/
- http://golgi.harvard.edu/biopages.html
- webarchive.mcdb.ucsb.edu/sears/biochemistry/info/website-

Core Paper-2 MICROBIOLOGY

Paper – 2						
Title of the paper MICROBIOLOGY Subject code:						
Category of the course	Year	Semester		Credits		
Core Paper	1 st	1	st	5		

Learning Outcome:

To provide a comprehensive knowledge on taxonomy and microbial diversity, growth, their harmful effects and beneficial role of microorganisms in agriculture and environment

Course outcomes:

CO-1	To understand the major discoveries of microbiology and describe microbial
	diversity, Microbial growth and metabolism.
CO-2	To provide basic knowledge about microbial culture, identification of microbes,
	principle and working of microscopes and sterilization techniques
CO-3	To enlighten the students on host microbe interaction and Epidemiology of
	microbial disease
CO-4	To update the knowledge on epidemic and pandemic diseases.
CO-5	To assess and appraise the role of novel microbes in environment and integrate them
	in specific innovative approaches.

	SYLLABUS Core Paper-5 MICROBIOLOGY						
Unit	Content	Hours	Cos	Cognitive level			
I	History and microbial taxonomy: Major discoveries related to the field of microbiology: Antony Von Leeuwenhoek, Louis Pasteur, Robert Koch and Edward Jenner. Microbial taxonomy: Bacteria, viruses, fungi, algae and protozoa, Microbial diversity: Biovars, Serovars and Prions, Microbial growth and metabolism: Microbial growth: Growth curve, factors affecting growth, Microbial metabolism- Methanogenesis, acetogenesis and Auxotrophs	10	CO1 CO2	K1,K2 &K3			

II	Microbial culture, identification, and control: Nutritional requirements for growth - Growth media and types, Pure culture techniques: Serial dilution and plating methods, Staining methods - Principles and types of staining (simple and differential), Identification of bacteria – Biochemical – IMViC, 16s rRNA sequencing. Microscopy: principles and applications of Bright field, florescent and Scanning electron microscopes, Microbial growth control:	10	CO2 CO3 CO5	K2,K3,K5
	Physical Methods – Heat, Filtration, Low Temperatures, High Pressure, Desiccation, Osmotic Pressure, Radiation; Chemical Methods			
III	Host microbe interaction and Epidemiology: Human microbiome; Skin, Gastrointestinal tract, Oral cavity, Lung. Symbiotic relationship of microbes: Symbiosis, Mutualism, Parasitism, Commensalism and endophyte. Epidemiology of microbes: causes, types and transmission of epidemic, endemic and pandemic Diseases	10	CO1 CO3 CO4	K1,K2,K3
IV	Microbial Diseases: Microbial diseases - General characteristics, pathogenesis, laboratory diagnosis and control measures of Pandemic and Epidemic diseases: Tuberculosis, Leprosy, Cholera, Typhoid, COVID-19, Yellow Fever, Flu, AIDS, Ebola, Zika Virus, Small Pox, Dengue, Chickungunya, Malaria, filariasis, Candidiasis, superficial mycosis	10	CO4 CO5	K4 &K5
V	Agricultural and Environmental Microbiology: Biological nitrogen fixation, free living, symbiotic nitrogen fixation, mechanism of Nitrogen, Biofertilizers- types and applications; Rhizosphere effect. Biogeochemical cycles-Carbon, Nitrogen,	10	CO1 CO2 CO3	K4 & K5

Sulphur and Phospho	orous; Methanogenic bacteria
Extremphiles- Thermo	philes Acidophiles, Halophiles
and alkalophiles; Biote	chnological application of
Extremophiles	

References

- Joanne Willey, Linda Sherwood, Christopher J. Woolverton, (2017). Prescott's Microbiology, (10th edition), McGraw-Hill Education, ISBN: 978-1259281594.
- Maheshwari D K, Dubey R C 2013. A Textbook of Microbiology.4th Edn S Chand Publishing India.
- Ananthanarayan and Paniker's (2017) Textbook of Microbiology, (10th edition), The Orient Blackswan, ISBN: 978-9386235251.
- Benson HJ. (1999). Microbiological Applications: A Laboratory manual in General Microbiology, 7th Edition, McGraw Hill. 5
- Managing epidemics- Key facts about major deadly diseases, World Health Organization (WHO) 2018.
 9. O'Flaherty, Vincent & Collins, Gavin & Mahony, Thérèse. (2010). Environmental Microbiology, Second Edition. 10.1002/9780470495117.ch11.
- Agriculture Microbiology, 2016. E-Course Developed By TNAU (ICAR)

Web Sources

- https://www.who.int/emergencies/diseases/managing-epidemics-interactive.pdf ISBN 978-92-4-156553-0. https://doi.org/10.3389/fmicb.2020.631736
- https://www.agrimoon.com/wp-content/uploads/AGRICULTURAL-Microbiology.pdf.

Core Paper-3

MOLECULAR CELL BIOLOGY

Paper – 3				
Title of the paper	MOLECULAR CELL	BIOLOGY	Subject cod	le:
Category of the course	Year	Semester		Credits
Core Paper	1 st	1	st	5

Learning Outcome:

The paper imparts a thorough knowledge on the basics of all the Cell biology concepts, molecules and its regulation. The student will get to understand the core concepts of molecules and cell biology.

Course outcomes:

C0-1	To understanding of the molecular machinery of living cells and the principles that govern the structures of macromolecules and their participation in molecular recognition.
CO-2	Identify the structures and purposes of basic components in prokaryotic and eukaryotic cells and their molecular mechanism
CO-3-	Demonstrate knowledge and understanding of the principles and basic mechanisms of nuclear envelope and its functions.
CO-4	Understand the metabolic pathways and the process of transmission of extracellular
	Signals
CO-5	Demonstrate the operation of various microscopes and microtomy in the laboratory

	SYLLABUS Core Paper-3 MOLECULAR C	CELL BIO	LOGY	
Unit	Content	Hours	COs	Cognitive level
	Cell Biology: Introduction to cell Biology- Basic properties of cells-Cellular dimension-Size of cells and their composition-Cell origin and Evolution.			
I	Structure of Prokaryotic and Eukaryotic cell. Organelles of the eukaryotic cell and its functions; Biomembranes - structural organization, transport across membrane (Passive, Active and Bulk transport); Cell-Cell adhesion- Cell junctions (Tight junctions, gap junctions, desmosomes, adherens); Extra cellular matrix (ECM)- components and role of ECM in growth.	10	CO1	K1,K2 &K3
II	Cell Division, Central dogma, DNA as genetic	10		K1,K2 &K3

	material; Prokaryotic and Eukaryotic Genome		CO2	
	Organization; Structure of eukaryotic chromosomes:			
	DNA compaction, nucleosome, Heterochromatin and			
	Euchromatin; DNA melting and buoyant density; Tm;			
	DNA reassociation kinetics (Cot curve analysis);			
	Structure of Nucleic acids, Prokaryotic and Eukaryotic			
	DNA Replication, Enzymes and accessory proteins			
	and mechanisms and Transcription, RNA processing			
	and regulation in Prokaryote and Eukaryotes.			
	Translation and post translational Modification.			
	Synthesis, sorting and trafficking of proteins: site of			
	synthesis of organelle and membrane proteins –			
	transport of secretary and membrane proteins across			
III	ER – post-translational modification in RER –	10	CO3	K1,K2 &K3
111	transport to mitochondria, nucleus, chloroplast and	10	CO3	K1,K2 &K3
	peroxisome - protein glycosylation – mechanism and			
	regulation of vesicular transport – golgi and post-			
	golgi sorting and processing – receptor mediated			
	endocytosis; Synthesis of membrane lipids			
	Molecular basis of eukaryotic cell cycle, Regulation			
	and cell cycle check points; Programmed cell death			
	(Apoptosis); Cell-Cell signaling-signaling molecules,			
	types of signaling, signal transduction pathways			
IV	(GPCR-cAMP, IP3, RTK, MAP Kinase, JAK-STAT, Wnt	10	CO4	K1, K2 & K3
	Pathway). Gene regulation: Repressors, activators,			
	positive and negative regulation, Constitutive and			
	Inducible, small molecule regulators, operon			
	concept: lac, trp, his operons .			
	Cancer Biology: Multistage cancer development			
V	Mitogens, carcinogens, oncogenes and proto-	10 CO5		K1,K2 & K3
•	oncogenes, tumor suppressor genes-Rb,		X1,X2 & X3	
	p 53, Apoptosis and significance of apoptosis.			

References

- Karp, G., 2009, Cell and Molecular Biology, Sixth edition, John Wiley & Sons, New York.
- David E.Sadva., 2009. Cell biology organelles structure and function, CBS publishers and distributors, New Delhi.
- Prakash S. Lohar, 2009. Cell and Molecular Biology.
- Bruce Alberts, Alexander Johnson, Julian Lewis, Martin Raff, 2007., Molecular Biology of the Cell, Fifth edition. Garland Science.
- Lodish, H., Berk, A., Zipursky, S.L., Matsudaira, P., Kaiser, A., Krieger, Scott and Darnell, J. 2007. Molecular Cell Biology. Media Connected, sixth edition. W.H.Freeman and Company
- Geoffrey.M.Cooper, Robert.E.Hausman.2007.The Cell-A Molecular Approach, Fourth edition. Sinauer Associates. •
- Luiz Carlos Uchoa, Janqueira, Jose, Carneiro. 2005. Basic HistologyText and Atlas. McGraw-Hill Professional.
- Paul A, 2001, Text Book Of Cell And Molecular Biology 2edition Niyogi Books •
- T.Fleming. 2002. Cell interactions: A practical approach Second edition.
- Alberts B, Molecular Cell Biology. 8. Casimeris et al., Lewin's cells. Jones and Bartlett.
- Plopper, Principles of cell Biology. Jones and Bartlett.
- Gartner, Cell Biology and Histology. LWW.
- Pollard et al., Cell Biology. Sounders.
- Copper, The Cell a Molecular approach. Sinauer

PRACTICAL-I (Biochemistry, Microbiology & Molecular Cell biology)

Title of the paper	PRACTICA	AL-I	Subject c	ode:
	(Biochemistry, Mic	robiology &		
	Molecular Cell	biology)		
Category of the	Year	Semester		Credits
course				
Core Paper	1 st	1 st		6

Learning Outcome:

The practical will establish a basic study skills on the subject and will improve the student's ability to calculate and improve their practical skill and knowledge.

Course outcomes:

On successful completion of the course the students will be able to

CO 1	(K2) Illustrate basic biochemistry procedures
CO 2	(K3) study the methods of estimation of biomolecules
CO 3	(K4) isolate & Analyze DNA, RNA & protein
CO 4	(K5) critically analyze the isolated biomolecules
CO 5	(K5) evaluate the quality and purity of DNA, RNA & Protein

	SYLLABUS PRACTICAL-I			
Unit	Content	Hours	COs	Cognitive level
	(A) Biochemistry - Practical			
	1. Basic calculations in Biochemistry - Normality,			
	Molarity, Molality percent solutions (v/v, w/v).		CO1	
	2. Calibration of pH meter		CO2	
A	3. Transition interval of commonly used pH indicators	15	CO3	K3 & K4
	4. Preparation of biological buffer - phosphate buffer		CO4	
	5a. Extraction of Proteins from biological materials		CO5	
	5b Protein separation methods:-Ammonium sulphate			
	Precipitation,			

	5c. Membrane Dialysis,			
	5d. SDS PAGE			
	6. Urea-SDS PAGE for separation of low molecular			
	weight proteins			
	7. Estimation of Proteins by Lowry's method			
	8. Estimation of Proteins by Biuret method			
	9. Estimation of Proteins by Bradford method			
	10. Estimation of RNA by orcinol method			
	11. Estimation of DNA by diphenylamine method			
	12. Estimation of Carbohydrate by Anthrone method			
	13 Purity check of DNA & RNA by UV			
	Spectrophotometry - A260/280			
	14. Separation of amino acids by Paper			
	Chromatography			
	15. Separation of sugars by Paper Chromatography			
	16. Separation of amino acids by Thin layer			
	chromatography			
	17. Separation of sugars by Thin layer			
	chromatography			
	18. Thermal Denaturation of DNA and UV absorption			
	studies			
	Demo Experiments			
	1. Gel permeation chromatography,			
	2. Affinity chromatography,			
	3. Ion.exchange chromatography			
	4. Western blotting			
	5. PCR			
	(B) Microbiology-Practical		CO1	
В	1. Sterilization of glassware using dry heat- hot air	15	CO2	K3,K4 &K5
	oven		CO3	

	2. Sterilization of media using moist heat – autoclave		CO4	
	3. Filter sterilization		CO5	
	4. Liquid media preparation – nutrient broth			
	5. Solid media preparation – SDA plates			
	6. Preparation of Agar slants			
	7. Streak plate method			
	8. Pour plate method			
	9. Spread plate method			
	10. Enumeration of total count of the bacteria			
	10. 11. Isolation of microbes from soil			
	12. Isolation of microbes from water			
	13. Isolation of microbes from air			
	14. Isolation of microbes from plant surface.			
	15. Isolation of pure culture of E.coli,			
	16. Isolation of pure culture of Aspergillus niger,			
	17. Isolation of pure culture of Streptomyces.			
	18. Gram staining and morphological characterization of microbes.			
	19. Negative staining of bacteria			
	20. Determination of growth curve of bacteria – E.coli			
	21. IMViC test of enteric bacteria			
	Demonstration			
	16srRNA sequencing			
	(C) Molecular Cell Biology –Practical			
	1. Isolation of Genomic DNA from E.coli		CO1	
	2. Isolation of plasmid DNA from E.coli		CO2	
C	3. Elution & quantification of DNA from agarose	15	CO3	K3,K4 & K5
	gel.		CO4	
	4. Preparation of competent cells and transformation		CO5	
	5. Polymerase chain reaction			
	6. Isolation of Total RNA from bacteria			
	Synthesis of cDNA by Reverse transcription polymerase chain reaction			

Elective Paper-1 BIOINSTRUMENTATION

Paper – 1				
Title of the paper BIOINSTRUMENTATION Subject code:				de:
Category of the Course	Year	Semester		Credits
Elective Paper	1 st	1	st	4

Learning Outcome:

The paper imparts a thorough knowledge on the basics of all the instrumentation concepts, in biology. The student will get to understand the core concepts of biological instruments and their principles.

Course outcomes:

At the end of the Course, the Student will be able to:

CO-1	Introduction and various types of Microscopic techniques
CO-2	Impart understanding on centrifugation instruments and techniques
CO-3-	Separation of Biomolecules
CO-4	Analytical methods on Spectroscopic Analysis
CO-5	Understand the application and Detection on Bioinstrumentation

	SYLLABUS Elective Paper-1 BIOINSTRUMENTATION						
Unit	Content	Hours	COs	Cognitive level			
	Microscopic Techniques: Principles and Applications:						
	Compound, Light, Stereo, Phase Contrast, Fluorescent			K1 & K2			
Τ	Microscopy, Scanning and Transmission Electron	7	CO1				
1	Microscopy, Scanning Electron Microscopy, Atomic	/					
	Force Microscopy, Confocal Microscopy, FRET and						
	Flow Cytometry.						
	Centrifugation: pH meter, Principle and Applications						
	of various types of centrifugation, Sedimentation						
II	Coefficient, Svedberg unit, RCF, Density Gradient	7	CO2	K1, K2,K3			
	Centrifugation. Chromatography Techniques:						
	Principle and Application of Paper Chromatography,						

	TLC, Gel Filtration Chromatography, Ion Exchange			
	Chromatography, Affinity Chromatography, GC &			
	HPLC.			
III	Electrophoretic Techniques: Principle and Application of Agarose Gel Electrophoresis, 2D-gel Electrophoresis, PAGE- NATIVE & SDS PAGE, Isoelectric Focusing, High resolution Electrophoresis, Immuno Electrophoresis (Immunofixation EP,), ELISA, RIA, Southern, Northern and Western Blotting. Electro blotting, PCR and RT-PCR, Microarray (DNA, Proteins)	7	CO3	K1, K2 & K3
IV	Spectroscopic Techniques: Theory and Application of UV and Visible Spectroscopy, Fluorescence Spectroscopy, Mass Spectroscopy, IR Spectroscopy NMR, ESR, Atomic Absorption Spectroscopy, X- ray Spectroscopy, Laser Spectroscopy and Raman Spectroscopy	7	CO4	K1,K2 & K3
V	Radio-isotopic Techniques: Introduction to Radioisotopes, Uses and their Biological Applications, Radioactive Decay — Types and Measurement , Principles and Applications of GM Counter, Solid and Liquid Scintillation Counter, Autoradiography, RIA, Radiation Dosimetry, Health effects of Radiations.	7	CO5	K1,K2 & K3

Reference books

- M.H. Fulekar and Bhawana Pandey Bioinstrumentation, Wiley
- Keith Wilson, John Walker, 2010. Principles and Techniques of Biochemistry and Molecular Biology (7th Edition), Cambridge University Press •
- David L. Nelson, Michael M. Cox. Menninger (2008). Principles of Biochemistry, Fifth edition W. H. Freeman, New York. •
- Experiments in Biochemistry: A Hands-On Approach by Shawn O. Farrell, Ryan T. Ranallo, Paperback: 324 pages, Publisher: Brooks Cole. 20 •
- Metzler D.E. 2001, the chemical reactions of living cells –Academic Press. 2nd edition.
- Stryer L,1999, Biochemistry-W.H. Freeman & Company, New York. 1. 4th edition
- L.Veerakumari (2006) Bioinstrumentation MJP Publisher Kindle edition
- Jefrey. M., Backer el al., 1996. Biotechnology- A Laboratory Course. Academic Press, New York.
- Holcapek, M., Byrdwell, Wm. C. 2017. Handbook of Advanced Chromatography /Mass Spectrometry Techniques, Elsevier

Elective Paper-2 PHARMACEUTICAL BIOTECHNOLOGY

Paper – 2						
Title of the paper	PHARMACEUTI		Subject cod	le:		
	BIOTECHNOLO	OGY				
Category of the	Year	Sem	ester	Credits		
Course						
Elective Paper	1 st	1	st	4		

Learning Outcome:

The subject imparts knowledge on the fundamentals of pharmaceutical biotechnology. The student will be provided with a basic knowledge and understanding about the pharmaceutical products produced based on biotechnological methods and its biomedical applications.

Course outcomes:

CO-1	Explain the basic components of pharmaceutical and biotechnology industry and methods and applications of biosensor
CO-2	Describe the Scientific, technical and economic aspects of vaccine & rDNA Technology
CO-3	Describe the basic concepts of protein Engineering, therapeutic proteins and enzyme immobilization techniques
CO-4	Describe the concepts of hybridoma technology, microbial biotransformation and microbial bio-transformed products
CO-5	Explain the basic components of somatic gene therapy, Xeno-transplantation and fermenter and bio safety methods

SYLLABUS Elective Paper-5 PHARMACEUTICAL BIOTECHNOLOGY						
Unit	Content	Hours	COs	Cognitive level		
I	Introduction to concepts and technologies in pharmaceutical biotechnology and industrial applications, Biosensors- Working and applications of biosensors in pharmaceutical Industries; Pharmacology and Ethnopharmacology: Scope, applications and Importance.	7	CO1	K1		
II	Scientific, technical and economic aspects of vaccine	7		K3 & K4		

	research and development, Preparation of bacterial		CO2	
	vaccines, toxoids, viral vaccine and antitoxins,			
	Storage conditions and stability of vaccines,			
	Recombinant DNA technology, Application of rDNA			
	technology and genetic engineering in the production			
	of: (i) Interferon (ii) Vaccines - hepatitis- B (iii)			
	Hormones – Insulin, Brief introduction to Protein			
	Engineering, Therapeutic proteins, Production of			
	Enzymes- General consideration – Amylase, Catalase,			
	Peroxidase, Lipase, Protease, Penicillinase, Methods			
	of enzyme immobilization and applications			
	Hybridoma technology - Production, Purification and			
	Applications, Formulation of biotech products -			
	Rituximab, Introduction to Microbial	7 C	CO3	K2
	biotransformation and applications, Study of the			
III	production of – penicillins, citric acid, Vitamin B12,			
111	Glutamic acid and Griseofulvin Somatic gene therapy,			
	Xenotransplantation in pharmaceutical biotechnology,			
	Large scale production fermenter design and its			
	various controls, Bio safety in pharmaceutical			
	Industry			
	Pharmacological activity of Plant drugs, Plant			
	Chemicals in modern pharmacology; biochemistry			
	and pharmacology of atropine, caffeine, ephedrine,			
IV	opioids, taxol, vinca alkaloids, synthetic substitutes	7	CO4	K2 & K4
- '	for therapeutically active plant constituents; drug			
	improvement by structure modification and bio-			
	transformation. Criteria for pharmacological			
	evaluation of drugs.			
V	Clinical Pharmacology, Drug therapy, therapeutic	7		K1,K2 &K5
	situation, benefits and risk of use of drugs,		CO5	

	Mechanism of drug action, Therapeutic efficacy,		
	Therapeutic index, tolerance, dosage forms and routes		
	of drug action, factors affecting drug action; Adverse		
	Drug reactions and drug poisoning-classification and		
	causes of ADR; principle clinical manifestations and		
	treatment of ADR, General principles of management		
	of drug poiosoning; antidotes, classisfication of drugs.		
- 1			

Reference Books:

- Harbans lal, 2011. Pharmaceuticals biochemistry. CBS Publishers and distributors Pvt. Ltd, Chennai.
- Carlos A. Guzmán and Giora Z. Feuerstein, 2009. Pharmaceutical Biotechnology, 1st edition, Springer.
- Daniel Figeys (Ed.). 2005. Industrial Proteomics: Applications for Biotechnology and Pharmaceuticals. Wiley, John & Sons, Incorporated.
- Kayser, O and Muller R.H.. 2004. Pharmaceutical Biotechnology Drug Discovery and Clinical Applications. WILEY-VCH
- Leon Shargel, Andrew B. C. Yu, Susanna Wu-Pong, and Yu Andrew B. C. 2004. Applied Biopharmaceutics & Pharmacokinetics. McGraw-Hill Companies
- Stefania Spada, Garywalsh. 2004. Directory of approved biopharmaceutical
- Gary Walsh. 2003. Biopharmaceutical, Biochemistry & Biotechnology.
- Heinrich Klefenz. 2002. Industrial pharmaceutical biotechnology.
- Thomas Lengauer (Ed.). 2002. Bioinformatics from Genomes to Drugs. Volume I& II. Wiley-VCH.
- John F. Corpenter (editor), Mark C. Manning. 2002. Rational Design of stable formulation Theory and Practice (Pharmaceutical Biotechnology). Plenum, US. Ist edition.
- D.I.A. Crommelin, et al., 2002. Pharmaceutical Biology. Amazon prime publications.
- Werner Kalow, Urs A Meyer and Rachel F. Tyndale. 2001.
- Pharmacogenomics. CPL press.

Useful Websites:

- https://tugasakhirsttifbogor.files.wordpress.com/2018/08/pharmaceutical-biotechnology.pdf
- http://library.nuft.edu.ua/ebook/file/Gad2007.pdf
- https://oasis.iik.ac.id:9443/library/repository/a932eb462c49885a2c72755977036b81.pdf

Core Paper-4 IMMUNOLOGY

Paper – 4						
Title of the paper	IMMUNOLOG	SY Subject co	ode:			
Category of the Course	Year	Semester	Credits			
Core Paper	1 st	2 nd	4			

Learning Outcome:

The paper imparts a thorough knowledge on the basics of immunology. The student will get to understand the core concepts of immune systems and their non-specific and specific mechanisms, vaccine, etc.

Course outcomes:

At the end of the course the students will be able to

CO-1	(K2) Illustrate various mechanisms that regulate immune responses and
	maintain tolerance
CO-2	(K3) describe key events and cellular players in antigen presentation,
	and how the nature of the antigen will shape resulting effector responses
CO-3	(K4) learn the concepts of cellular and molecular processes that
	represents the human immune system.
CO-4	(K5) elucidate the role of immunological regulation and tolerance at a
	cellular and molecular level
CO-5	(K6) compile concepts on immunological principles and diagnosis

	SYLLABUS Core Paper-4 IMMUNOLOGY						
Unit	Content	Hours	COs	Cognitive level			
	History and overview of the immune system. Types of						
	immunity - innate, acquired, passive and active, self			K1 & K2			
	vs non-self-discrimination. Physiology of immune		CO1				
I	response: HI and CMI specificity and memory. Cells	10	COI				
	and organs of the immune system .Lymphoid tissue,						
	origin and development. Hematopoiesis and						
	differentiation of lymphocytes						
II	Lymphocyte-sub-populations of mouse and man.	10		K2,K3 & K5			

	APC cells, lymphokines, Phagocytic cells, macrophage, dendritic cells, K and NK Cells. Nature and biology of antigens, epitopes, haptens, adjuvents. Immunoglobulins- structure, distribution and function. Immunoglobulin super family Isotypic, Allotypic and Idiotypic variants, generation of antibody diversity		CO2	
III	Monoclonal antibody production and its applications. Types of vaccine and vaccination schedule. Role of MHC antigens in immune responses, Structure and function of class I and class II MHC molecules. MHC antigens in transplantation and HLA tissue typing. Transplantation immunology- immunological basis of graft rejection, cinical transplantation and Immunosuppressive therapy. Tumour Immunology- Tumour antigen, Immune response to tumours	10	CO3	K2 & K5
IV	Effector mechanisms in immunity - macrophage activation, cell mediated cytotoxicity, cytotoxicity assay. Hypersensitivity reactions and types. The complement system, mode of activation, classical and alternate pathway, biological functions of C proteins	10	CO4	K4 & K5
V	Immunotechniques- Principle and Applications: Immuno diffusion,Immuno fluorescence, Insitu localization technique - FISH and GISH. RIA and ELISA, FACS, Western blot, ELISPOT assay. Agglutination tests. VDRL test.Purification ofantibodies, Quantitation of immunoglobulin by RID, EID and nephelometry, CMI techniques and Immunotherapy.	10	CO5	K3,K4 & K6

Reference Books:

- Peter J. Delves, Seamus J. Martin, Dennis R. Burton, Ivan M. Roitt, 2011.
- Roitt.s Essential Immunology, 12 edition, Wiley-Blackwell. USA.
- Kannan. I., 2010. Immunology. MJP Publishers, Chennai.
- Abbas, A.K., A.H.L. Lichtman and S.Pillai, 2010. Cellular and MolecularImmunology. 6th Edition. Saunders Elsevier Publications, Philadelphia.
- SeemiGarhat Bashir, 2009. Text Book of Immunology, PHI LearningPvt. Ltd. New Delhi.
- Thomas J. Kindt, Barbara A. Osborne and Richard A. Goldsby, 2006. Kuby Immunology, 6th edition, W. H. Freeman & Company.
- Nandini Shetty, 1996, Immunology: introductory textbook I. NewAge International, New Delhi.

Useful Websites:

- www.library.csusm.edu/course guides/biology
- www.immunologylink.com

http://www.wiley.com/college/bio/karp12791/weblinks.html

Core Paper-5

MOLECULAR GENETICS

Paper – 5						
Title of the paper MOLECULAR GENETICS Subject code:						
Category of the	Year	Sem	ester	Credits		
course						
Core Paper	1 st	2	nd	3		

Learning outcome:

The paper imparts a thorough knowledge on the basics of all the Genetics concepts, molecules and its regulation. The student will get to understand the core concepts of molecules and genetics.

Course outcomes:

At the end of the Course, the Student will be able to:

CO-1	To acquire good knowledge about the molecular mechanisms of gene expression and understand the theories behind the organization and functions of genetic material in the living world.
CO-2	Identify and distinguish genetic regulatory mechanisms at different levels and explain the processes behind mutations and other genetic changes and study various chromosomal abnormalities.
CO-3-	Make the students understand different range of DNA damage and range of their tools for their detection an.
CO-4	Learn the concepts of the transposons and their applications.
CO-5	Detects the Allele frequencies and genotype frequencies in populations and describe the concepts behind the theory of evolution

	SYLLABUS Core Paper-5 MOLECULAR GENETICS					
Unit	Content	Hours	COs	Cognitive level		
I	Genes and chromosomes, Colinearity of Genes and Proteins, Genetic code, The complexity of eukaryotic genome (introns, exons, repetitive DNA sequence, gene duplication and pseudogenes). DNA markers - VNTR, STR, microsatellite, SNP and their detection Techniques.	10	CO1	K1,K2 & K3		
II	Mutation and Gene polymorphism: Types, Mutagens, Mutable and Mutator Genes. Spontaneous and virus induced mutation, Radiation induced mutation. Ionizing radiation, UV radiation. Chromosomal Abnormalities and associated genetic diseases, Techniques in the study of chromosomes and their applications, Karyotyping and usefulness of chromosomes in understanding Genetic variation,	10	CO2	K1,K2 &K3		
III	DNA Damage and Repair-Internal and external agents causing DNA damages, DNA damages (Oxidative damages, Depurinations, Depyrimidinations, O6-methylguanines, Cytosine deamination, single and double strand breaks), Mechanisms of DNA damage (transition, transversion, frameshift, nonsense mutations), Repair mechanisms (Photo reactivation, excision repair, mismatch repair, post replication repair, SOS repair), Discovery: Early experiments of McClintock in maize. Insertion sequences in prokaryotes. Complex transposons (ex. Tn3, Tn5, Tn9 and Tn10).	10	CO3	K1,K2 &K3		

complications of dominance,			
om mating – multiple alleles,	10	CO4	K1 &K2
between sexes (autosomal and			
random genetic drift, Genetics			
age and chromosome mapping.			
and mechanism of crossing			
redity: Biology of Plasmids,			
and structure of F.RTH. col		CO5	K1,K2 & K3
Replication and partitioning,			
py number control-natural and			
nsfer and their applications-			
ect, Genomics and Modern			
rstanding genome.			
1	between sexes (autosomal and random genetic drift, Genetics tage and chromosome mapping. and mechanism of crossing tredity: Biology of Plasmids, and structure of F.RTH. col Replication and partitioning, opp number control-natural and their applications-ect, Genomics and Modern trestanding genome.	between sexes (autosomal and random genetic drift, Genetics 10 tage and chromosome mapping. and mechanism of crossing teredity: Biology of Plasmids, and structure of F.RTH. col Replication and partitioning, opp number control-natural and ansfer and their applications-ect, Genomics and Modern	between sexes (autosomal and random genetic drift, Genetics age and chromosome mapping. and mechanism of crossing redity: Biology of Plasmids, and structure of F.RTH. col Replication and partitioning, opp number control-natural and ansfer and their applications-ect, Genomics and Modern

References:

- Principles of Genetics- 8th Edition, Gardner, Simmons and Snustad, 2002.
- The Cell- A Molecular Approach. 3rd Edition. Geoffrey M. Cooper, Robert E. Hausman, 2003.
- Genetics- Kavitha B. Ahluwalia, New Age International Pvt Ltd and Publishers, New Delhi, 2010
- Genetics P.S Verma and A.K Agarwal (Rack 3, Central Library)
- Robert Brooker. 2011. Genetics- Analysis and Principles. 4th edition. McGraw Hill.
- Leland Hartwell, Leroy Hood, Michael Goldberg, Ann Reynolds, Lee Silver, 2010. Genetics: From Genes to Genomes, 4th Edition, McGraw Hill.
- Rastogi Smita and Neelam Pathak.,2010. Genetic Engineering, Oxford University Press, New Delhi. (Rack 3, Central Library)
- Watson, Hopkins, Roberts, Steitz, Weiner, 2004. Molecular Biology of Genes, 4th Edition.
- DNA markers Protocols, applications and overviews Anolles G. C. & Gresshoff P. M. Wiley-Liss
- Molecular markers in Plant Genetics and Biotechnology Vienne De. D. Science Publishers
- Genetics of Population Hedrick P.W. Jones & Bartlett 4 Principle of Population Genetics Hartl D. L. and Clark A. G. Sinauer Associates

Core Paper-6 GENETIC ENGINEERING

Paper – 6							
Title of the paper GENETIC ENGINEERING Subject code:							
Category of the	Year	Semester		Credits			
course	course						
Core Paper	1 st	2	nd	3			

Learning Outcome:

The paper imparts a thorough knowledge on the basics of all the biotechnological application on plant and animals. The student will get to understand the core concepts of biotechnology.

CO-1	Understanding the basic steps of gene cloning and the role of enzymes and vectors responsible for gene manipulation, transformation and genetic engineering.
CO-2	Getting detailed knowledge of gene transfer methods and identifying suitable
	hosts for cloning.
CO-3	Acquiring theoretical knowledge in the techniques, tools, and application and
	safety measures of genetic engineering.
CO-4	Describes the genome mapping and sequencing and methods for gene therapy.
CO-5	Elucidate different techniques involved in genetic engineering

SYLLABUS Core Paper-6 GENETIC ENGINEERING						
Unit	Content	Hours	COs	Cognitive level		
I	Gene cloning. Genetic engineering tools. Nucleic acid manipulating enzymes. Promoters, Selectable markers and reporters used in rDNA technology. Restriction digestion, Ligation, Transformation, Selection of Recombinants. Construction of gene libraries	10	CO1	K1,K2, K5		
II	E.Coli vectors - pBR322 and its derivatives; Cloning vectors for gram negative bacteria - ColE1, p15A, R1, IncPa, pSC101; Lambda bacteriophage vectors, filamentous phages, Cosmids, Phasmids, Phagemids.	10	CO2	K2,K3, K4		

	Classica in account a sition has take (Desillors subtilis)			
	Cloning in gram-positive bacteria (Bacillus subtilis)			
III	Cloning in yeast <i>Saccharomyces cerevisae</i> . Life cycle and types of vectors; Eukaryotic vectors. SV40 (molecular genetics and expression); Specialized cloning vector for cDNA; Synthesis of specific RNA in vitro; Vectors for cloning promoters and terminators; vectors with adjustable copy number	10	CO4	K3,K4 &K6
IV	Nucleic acid hybridization techniques; Molecular probes (Types of probes and its construction); probe labeling. Nick translation, End labeling and Random primer labeling. Polymerase chain reaction and its variants; DNA fingerprinting; DNA sequencing first generation sequencing methods (Maxam and Gilbert sequencing, Sangers Dideoxy sequencing, Pyrosequencing, PCR based sequencing and hybridization sequencing). Second generation sequencing methods	10	CO4	K3,K4,K5 & K6
V	Site directed mutagenesis; DNA microarray; chromosome walking and jumping.Molecular techniques in prenatal diagnosis gene therapy, Transgenic animals (knockout mice) and plants (Flavr savr tomato), Pharmaceutical products (Vaccine, Humulin, etc), Crop improvement. Pesticide resistance, herbicide resistance, transgenic animals and GM foods; Modern Concepts in Genetic Analysis.	10	CO5	K3,K4,K5 & K6

- T.A. Brown, 2010. Gene cloning and DNA analysis: An introduction, 6th edition, Wiley-Blackwell.
- Sandy B.Primrose and Richard Twyman, 2006. Principles of Gene Manipulation and genomics, 7th edition, Wiley-Blackwell.
- Lewin, 2009. Genes X, 10th edition, Jones & Barlett Publishers
- Raymond Rodriguez and David T.Denhart 2003. Vectors, A survey of molecular cloning vectors and their uses
- Errst-L. Winnacker 1987. From genes to clones. Introduction to Gene Technology,
- Ed. David V. Geoddel 2002.Gene Expression technologies. Methods in enzymology (Vol.185)
- William Wu, Michael J.Welsh, Peter B.Kaufrmar, Helen H.Zhang 2001. Methods in Gene Biotechnology

PRACTICAL-II

(Immunology, Molecular Genetics & Genetic Engineering)

	PRACTICAL-II (Imn	nunology,		
Title of the paper	Molecular Genetics &	& Genetic	Subject cod	le:
	Engineering))		
Category of the	Year	Sem	ester	Credits
course				
Core Paper	1 st	2	nd	4

Learning Outcome:

The practical will establish a basic study skill on the subject and will improve the student's ability to have a hands on experience on the above core subjects.

CO-1	(K2) Isolate and identify microbes from various sources.
CO-2	(K3) Characterize microbes.
CO-3	(K4) Examine Plant and Animal cells and their functions
CO-4	(K5) Assess extracted DNA, RNA and protein for rDNA technology
CO-5	(K6) To study cloning tools

SYLLABUS PRACTICAL-II						
Unit	Content	Hours	COs	Cognitive level		
A	(A) Immunology – practical 1. Identification of various immune cells from human peripheral blood. 2. Lymphocyte separation and identification 3. Determination of lymphocyte viability by trypan blue method 4. WBC counting 5. Preparation of serum and plasma 6. Electrophoretic profile of human serum in native PAGE 7. Preparation of cellular antigen – human RBC 8. Preparation of antigen-adjuvent mixture for production of polyclonal antibody 9. Isolation of IgG molecule from serum 10. Immunodiagnostics: CRP	15	CO1 CO2 CO3 CO4 CO5	K,.K2,K3,K4,K5 &K6		

	 12. Immunodiagnostics: Widal 13. Immunodiagnostics: RA 14. Immunodiagnostics: Blood grouping and typing 15. Immunodiagnostics: hCG 16. ELISA 17. Radial Immunodiffusion 18. Ouchterlony Immunodiffusion 19. Immunoelectrophoresis 20. Rocket electrophoresis 21. Counter current immunoelectrophoresis. 22. Bioassays for cytokines 23. Radioimmunoassays (Demonstration) (B) Molecular Genetics – Practical 1. Isolation of DNA from blood. 2. Isolation of RNA from animal tissue. 			
В	 Formaldehyde denatured Agarose gelelectrophoresis of RNA. Urea denatured agarose gel electrophoresis of RNA. Radiation induced genetic damage assessment Chemical induced genetic damage assessment. Single Strand Confirmation Polymorphism (SSCP) Preparation of metaphase chromosomes from Animal / Plant sample. Karyotype analysis. 	15	CO1 CO2 CO3 CO4 CO5	K3,K4 & K5

C	(C) Genetic Engineering – Practical 1. Preparation of plasmid DNA by alkaline lysis method. 2. Agarose gel electrophoresis 3. Silver staining of gels 4. Methylene blue DNA staining 5. Elution of DNA from agarose gel. 6. Restriction enzyme digestion. 7. Restriction mapping of plasmid DNA. 8. Ligation. 9. Competent cell preparation 10. Transformation and selection of recombinants. 11. Cloning of fragments in PBR322 12. Insertional inactivation/Blue white screening 13. RAPD 14. RFLP 15. Amplification of DNA - PCR 16. Determination of molecular weight of DNA Demonstration: RT-PCR for COVID-19	15	CO1 CO2 CO3 CO4 CO5	K3,K4 &K5
---	---	----	---------------------------------	-----------

Elective Paper-3 REGULATORY AFFAIRS AND INDUSTRIAL STANDARDS

Paper – 3							
Title of the paper	REGULATORY AFFA	IRS AND	Subject	code:			
	INDUSTRIAL STAND	ARDS					
Category of the	Year	Semester		Credits			
course							
Elective Paper	1 st	2 nd		3			

Learning Outcome:

The subject imparts knowledge on the fundamentals of regulatory requirement in industries. The student will be provided with a basic knowledge and understanding about the regulatory affairs based on biotechnological industry requirements.

CO-1	Elucidate the basic requirements of establish laboratory for testing samples as per the regulatory body's requirements
CO-2	Describe the Scientific, technical knowledge about various food preservation Techniques
CO-3	Describe the basic concepts of packing of food materials, various parameters observed during packaging
CO-4	Describe the testing of food materials and identifying of microbial food contaminant
CO-5	Explain the basic of food safety management system, good manufacturing practice and good hygienic practices

SYLLABUS | Elective Paper-3 | REGULATORY AFFAIRS AND INDUSTRIAL STANDARDS

	STANDARDS						
Unit	Content	Hours	COs	Cognitive level			
I	Planning, Organisation and setting of Food testing laboratory and laboratory safety Understand the requirements for setting up a laboratory for the legal defensibility of analytical data. The ideal structure design, environment, layout for microbiological testing and Air handling etc., Introduction about accreditation, Different accreditation bodies (NABL, APLAC, ILAC), Requirements for ISO/IEC 17025:2017, documentation, pre-requisites for accreditation, management requirements, technical requirements, measurement of traceability, Laboratory safety: Personnel and laboratory hygiene, emergency planning, general hazards in a food laboratory, safety equipment, storage of chemicals, acids, flammables etc, handling and biological spills and waste disposal.	Hours 7	COs CO1	K2,K3,K4			
II	Principles of Food Preservation technology Heat: Principles of Heat transfer, Blanching, Pasteurization, Heat sterilization, thermal extrusion, cooking. Water Removal: Forms of Water in Foods, Sorption of water in foods, Water activity, drying and evaporation technology. Temperature reduction: Chilling, Freezing, Radiation: Ionizing Radiation, Microwave, Use of chemicals: Class-I & Class-II preservatives, smoke other chemical additives, New non-thermal methods: High hydrostatic pressure, modified atmosphere, high intensity pulsed electric fields, intense pulsed light, oscillating magnetic fields,	10	CO2	K2 & K3			

	hurdle technology, ultrasonic and ohmic heating etc.			
	Principles of Food Packaging technology			
III	Effect of environment on food stability: light, oxygen, water, temperature, sensitivity to mechanical damage and attack by biological agents, Different packaging materials used for food packaging and their properties including barrier properties, strength properties, optical properties: Glass, metals, paper, plastics, biodegradable and edible films and coatings aseptic packaging and combinations, Selection of packaging material and design for various food commodities including fresh produce (Fruits and vegetables), milk and milk products (dairy), cereal, pulses, oil, meat, fish, poultry, water and processed foods, Evaluation of quality and safety of packaging materials- different testing procedures, Function of packaging: Protective packaging and active packaging smart and intelligent packaging, Newer packaging technologies-CAP/MAP packaging aseptic processing and packaging, irradiated packaging, retort pouch and microwaveable packaging.	10	CO3	K2,K3 & K4
IV	Food Microbiology and testing Introduction of Food microbiology: Classification and nomenclature of microorganisms. Morphology and structure of microorganisms in foods (yeast and Molds, Bacterial cells viruses), Important genera of mold, yeast, bacteria (Gram positive and Gram negative, facultative aerobic and anaerobic, endospore forming bacteria and non-sporulating bacteria), Bacterial groups (lactic acid, acetic acid, butyric acid etc.,), thermophilic, proteolytic, saccharomyticetc,	10	CO4	K2,K3,K4

	coliforms, faecal coliforms, enteric pathogens and			
	emerging microbes, Sources of microorganisms in			
	food chain (raw materials, water, air, equipment etc)			
	and microbiological quality of foods, Microbial			
	growth characteristics: Reproduction and growth			
	(fission, generation time optimum growth, growth			
	curve etc). Microbial growth in foods: intrinsic (pH,			
	Moisture content, oxidation-reduction potential,			
	nutrient content, antimicrobial constituents and			
	extrinsic parameters (temperature of storage, relative			
	humidity of environment, presence and concentration			
	of gases in the environment, Thermal destruction of			
	microorganisms: Thermal death time, D Value, Z-			
	Value, F-Value, thermal death time curve, 12 D			
	Concept, Microbial food spoilage and food borne			
	diseases, food pathogens, bacillus cereus and other			
	bacillus species, campylobacter, clostridium species,			
	Enterobacteriaceae, E. coli, listeria monocytogens,			
	salmonella, shigella, staphylococcus aureus, vibrio			
	species, yersinia enterocolitica, fungi, virus etc.,			
	Methods for the Microbiological examination of			
	foods: Sampling activity and sampling plan, pure			
	culture isolation: streaking, serial dilution and plating,			
	cultivation, maintenance and preservation/stocking of			
	pure culture, Observation of Indicator organisms:			
	Direct examination, enumeration methods, plate			
	count, MPN, biochemical test, Rapid methods			
	detection of specific organisms.			
	HACCP and Food safety management systems:			
V	ISO 22000: Importance of implementing a HACCP	7		K2,K3 & K6
	system and how it can be applied to various products.		CO5	-
	J SPRINGE SE SINCE PROGRAMM			

References:

- ISO 9001, Quality management systems Requirements
- ISO 17034 General requirements for the competence of reference material producers
- ISO/IEC 17043 Conformity assessment General requirements for proficiency testing. Food safety standards authority regulation 2011.

Elective Paper-4 ENVIRONMENTAL BIOTECHNOLOGY

Paper – 4						
Title of the paper	ENVIRONMENTAL Subje			code:		
	BIOTECHNOLO)GY				
Category of the	Year	Semester		Credits		
course						
Elective Paper	1 st	2	nd	3		

Learning Outcome:

The subject imparts knowledge on the fundamentals of ecology and pollution. The student will be provided with a basic knowledge and understanding about the functions of ecosystem and reduction of pollution by biotechnological tools.

Course outcomes:

On successful completion of the course the students will be able to

CO-1	(K2) explain various waste management methods
CO-2	(K3) classify potential methods of biodegrading organic pollutants.
CO-3	(K4) examine the techniques involved in remediation of polluted environments
CO-4	(K5) assess types of pollution & its control
CO-5	(K6) compile biotechnological approaches to degrade xenobiotic compounds

	SYLLABUS Elective Paper-4 ENVIRONMENTA	L BIOT	ECHNO	DLOGY
Unit	Content	Hours	COs	Cognitive level
I	Environment: Basic concepts and issues; Environmental management and Conservation, Environmental Laws & Agencies involved in conservation. Environmental Pollution: Types of pollution & its control strategies -Air pollution, Soil pollution, Water pollution, Oil pollution & Radioactive pollution	7	CO1	K2
п	Biofilm Kinetics: Completely mixed biofilm reactor- Soluble microbial products and inert biomass-Special- case biofilm solution. Reactor types:- batch reactor - continuous-flow stirred-tank reactor- Plug-flow	7	CO1 CO2 CO5	К3

	reactor. Engineering design of reactors- Reactors in series			
III	Waste water management, source of waste water, Waste water treatment- physical, chemical and biological treatment. Microbiology of Waste water; Aerobic and anaerobic process, BOD and COD.	7	CO3	K4
IV	Toxicity: Types and Test for evaluating Toxicity. Biosensors, Biomonitoring of toxic materials Biomagnification, Biomining and Biofuels	7	CO4	K5
V	Bioremediation; <i>In-situ and Ex-situ</i> Bioremediation of contaminated soils and waste land; Microbiology of degradation of Xenobiotics in environment; Pesticides, Surfactants, Degradative plasmids. Solid waste: Composting, Vermiculture and methane production.	7	CO5	K6

- Gareth M. Evans, Gareth G. Evans, Judy Furlong 2011
- Environmental biotechnology: theory and application John Wiley & Sons, Ltd. West Sussex, UK
- M. Moo-Young, W.A. Anderson, A.M. Chakrabarty, 2010. Environmental Biotechnology: Principles and Applications. Springer.
- M. H. Fulekar, 2010 Environmental Biotechnology, by Science Publishers Department of Life Sciences, University of Mumbai, India,
- Stanley E. Manahan, 2009. Environmental Chemistry, Ninth Edition, CRC Press.
- Environmental chemistry 5th edition by A.K.De. 1997.
- Bruce E. Rittmann and Perry L. McCarty. 2001. Environmental Biotechnology: Principles and applications. McGraw Hill, Newyork.
- Ahmed N, Qureshi, F.M. and Khan, O.Y. 2001. Industrial and Environmental Biotechnology. Horizon Press.
- Ahmed N, Qureshi, F.M. and Khan, O.Y. 2001. Industrial and Environmental Biotechnology. Horizon Press.

Useful Websites:

- lbewww.epfl.ch/LBE/Default E.htm
- http://lbe.epfl.ch

Non-Major Elective Paper-IA VERMICULTURE TECHNOLOGY

NME-IA							
Title of the paper	VERMICULTU TECHNOLOG		Subject coo	le:			
Category of the Course	Year	Sem	ester	Credits			
Elective Paper	I year	2	nd	2			

Learning Outcome:

The subject imparts knowledge on the importance of vermiculture and Vermicompost. The student will be provided with a basic knowledge and understanding about the procedure of vermiculture technology and applications of Vermicompost.

Course outcomes:

On successful completion of the course the students will be able to

CO-1	(K2) Understand the Vermiculture and 4R's of recycling.
CO-2	(K3) Identify the organic matter and Humus formation.
CO-3	(K4) Differentiate nutritional value of fertilizer and Vermicompost.
CO-4	(K5) Practice and handle vermicomposting
CO-5	(K6) Identification, harvest and transport

\$	SYLLABUS Non-Major Elective Paper-6 VERMICULTURE TECHNOLOGY						
Unit	Content	Hours	COs	Cognitive level			
I	Introduction, Definition, meaning and economic importance of vermiculture. Concept of Recycling and 4R's. (Reduce, Reuse, Recycle, and Restore)	2	CO1	K2			
II	Introduction to matter, types and Humus. Humus Cycle.	2	CO1 CO2	К3			
Ш	Introduction to fertilizers and their importance. Vermicompost as fertilizer and comparison with other fertilizers.	2	CO1 CO3	K4			

IV	Vermicomposting: Vermibeds, types, preparation, composting conditions, and maintenance.	2	CO2 CO4	K5
V	Vermicompost identification, separation, Packing, Storage, and transport.	2	CO5	K6

- 1. Rahudakar V.B (2004). Gandul khatashivay Naisargeek Paryay, Atul Book Agency, Pune.
- 2. Sultan Ahmed Ismail, 2005. The Earthworm Book, second Revised Edition. Other India Press, Goa,India. Bhatnagar & Patla, 2007.
- 3. Earthworm vermiculture and Vermin-composting, Kalyani Publishers, New Delhi.

Non-Major Elective Paper-IC FOOD BIOTECHNOLOGY

NME-IC							
Title of the paper	FOOD BIOTECHNO	OLOGY	Subject cod	le:			
Category of the Course	Year	Semester		Credits			
Elective Paper	I year	2	nd	2			

Learning Outcome:

The subject imparts knowledge on the Food Science and Technology. The student will be provided with a basic knowledge and understanding about the Food groups, Nutrition, Fermented foods, and Techniques used for food safety.

Course outcomes:

On successful completion of the course the students will be able to

CO-1	(K1) Understand the Food science and Nutrition
CO-2	(K2) Identify the Food quality and processing
CO-3	(K3) Understand the role of enzymes in fermented and food processing
CO-4	(K4) Understand the food hazards and safety
CO-5	(K5) Knowledge of techniques used in food industry.

SYLLABUS Non-Major Elective -IC FOOD BIOTECHNOLOGY							
Unit	Content	Hours	Cos	Cognitive level			
I	Introduction to Food Science and Technology: Food chemistry, carbohydrates, proteins, lipids, vitamins, minerals. Nutrition, calorific value of foods, Diet and different types of diet.	2	CO1	K1			
II	Standards for food analysis; identity, purity and methods (cereals, vegetables, fruits and dairy products) Food processing and preservation.	2	CO1 CO2	K2			

III	Fundamentals of Food Biotechnology; Role of biotechnology in fermented food products (dairy products, oriental fermentations, alcoholic beverages, and food ingredients), Enzymatic processing of fruit juices. Role of enzymes in baking and meat processing.	2	CO3	К3
IV	Food Safety; Food Contaminants (Microbial, Chemical, Physical), Food Adulteration (Common adulterants), Food Additives (functional role, safety issues),	2	CO2 CO4	K4
V	Biotechniques; Applications of immunological techniques to food industry; Detection methods for pathogens from food samples, pesticide Residues, Newer sources of Ingredients.	2	CO4 CO5	K5

- **1.** Manay, S.; Shadaksharaswami, M., (2004). *Foods: Facts and Principles*, 4th Ed. New Age Publishers.
- 2. Meyer, (2004). Food Chemistry. New Age Publishers.
- **3.** Ramaswamy H. and Marcott M. (2005), *Food Processing Principles and Applications*. CRC Press.
- 4. Byong H.Lee, (2015), Fundamentals of food biotechnology. Wiley-Blackwell.
- **5.** Food safety by Laura K Egendorf, 2000.
- **6.** Emerging technologies; food process by Da-wen, 2005.
- 7. Keith H. Steinkraus, (2004), Industrialization of indigenous fermented foods. CRC Press.

Core Paper-7

BIOINFORMATICS

Paper – 7							
Title of the paper BIOINFORMATICS Subject code:							
Category of the	Year	Semester		Credits			
course	course						
Core Paper	2 nd	3	rd	5			

Learning Outcome:

The paper imparts a thorough knowledge of the basics of bioinformatics tools. The student will get to understand the core concepts of in Silico biological research.

CO-1	To get introduced to the basic concepts of Bioinformatics and its
	significance in Biological data analysis.
CO-2	Describe the history, scope and importance of Bioinformatics and role of
	internet in Bioinformatics.
CO-3	Explain about the methods to characterize and manage the different types
	of Biological data.
CO-4	Classify different types of Biological Databases.
CO-5	Introduction to the basics of sequence alignment and analysis

	SYLLABUS Core Paper-7 BIOINFORMATICS							
Unit	Content	Hours	COs	Cognitive level				
	Database concepts, Introduction to internet and its							
	application, Introduction to bioinformatics, Protein							
	and nucleotide databases, Information retrieval from							
	biological databases, Sequence alignment and							
	database searching-similarity searches using BLAST		CO1					
I	and FASTA. Artificial Intelligence: Introduction to	10		K1 & K2				
	biological neural network, motivation for artificial							
	neural network (ANN), Big data analysis -							
	DNA/RNA/protein sequence or structure data, gene							
	expression data, protein-protein interaction (PPI) data,							
	pathway data and gene ontology (GO) data							

II	Sequence alignment basics, match, mismatch, similarity, scoring an alignment, gap penalty, protein vs DNA alignments, Dot-matrix alignment, pairwise alignment. Global and local alignment algorithms, multiple sequence alignment-progressive alignment and Iterative alignment algorithms, consensus sequence, patterns and profiles, Database searching: Pairwise alignment based rigorous algorithm (Smith and Waterman) and Heuristic algorithms (FASTA and Blast). Multiple sequence alignment based database searching. PSI- Blast, PAM and Blosum matrices	10	CO2	K2,K3 & K5
III	Bioinformatics for genome sequencing, EST Clustering and analyses, Finding genes in prokaryotic and eukaryotic genomes, Regulatory sequence analysis, Bioinformatics for Genome maps and markers, Bioinformatics for understanding Genome variation, Protein structure-X-ray crystallography, The protein databank and the PDBSum-SCOP, CATH, DALI and HSSP; Visualization of molecular structures-RasMol and Pymol; Protein secondary structure prediction, Fold Recognition; Transmembrane topology prediction	10	CO3	K2 & K5
IV	Molecular visualization tools. Rasmol, Chime and Spdb viewer. Structure analysis tools. VAST and DALI, Structural biology - Homology modeling, Bioinformatics for micro array designing and transcriptional profiling, Bioinformatics for metabolic reconstruction, Bioinformatics for phylogenetic analysis	10	CO4	K4 & K5
V	Medical application of Bioinformatics. Disease genes, Drug Discovery. History. Steps in drug discovery.	10	CO5	K3,K4 & K6

Target Identification. Target Validation. QSAR. Lead		
Identification. Preclinical pharmacology and		
toxicology. ADME. Drug designing. Rational drug		
design. Computer aided drug design. Ligand based		
approach. Target based approach		

- DassanayakeS.Ranil, Y.I.N. Silva Gunawardene, 2011. Genomic and Proteomic Techniques, Narosa Publishing House Pvt. Ltd, New Delhi.
- Thiagarajan B, Rajalakshmi.P.A., 2009. Computational Biology, MJP publishers, Chennai.
- BosuOrpita, SimminderKaurThukral, 2007. Bioinformatics Databases, Tools and Algorithms, Oxford University press, New Delhi.
- Rastogi.S.C, Mendiratta.N, Rastogi.P, 2004. Bioinformatics methods and applications, Prentice-Hall of India private limited, New Delhi.
- Lohar s. Prakash, 2009. Bioinformatics, MJP Publishers, Chennai.
- Stephen misener and Stephen A. Krawetz., 2000. Bioinformatics methods and protocols, Humana press Inc, New Jersey.
- Durbin.R, S.Eddy, A.Krogh and G.Mitchison, 1998. Biological sequence analysis, Cambridge university press, Cambridge.

Core Paper-8
PLANT AND ANIMAL BIOTECHNOLOGY

Paper – 8							
Title of the paper	PLANT AND AND BIOTECHNOLO		Subject cod	le:			
Category of the	Year	Sem	ester	Credits			
course							
Core Paper	1 st	2	nd	5			

Learning Outcome:

The paper imparts a thorough knowledge on the basics of all the biotechnological application on plant and animals. The student will get to understand the core concepts of biotechnology.

CO-1	To impart theoretical knowledge on various techniques of plant biotechnology like							
	tissue culture, plant genetic transformation and their application in industries.							
CO-2	Importance of secondary metabolites and production in plants.							
CO-3	To develop concepts, principles and processes in animal biotechnology.							
CO-4	Concept and different types in Animal Cell Culture and animal cell lines.							
CO-5	Use of molecular biology techniques genetically engineer the animals to improve sustainability, productivity and suitability for pharmaceutical and industrial applications.							

SYLLABUS Core Paper-8 PLANT AND ANIMAL BIOTECHNOLOGY						
Unit	Content	Hours	COs	Cognitive level		
I	Introduction of plant tissue culture, composition of media, Micropropagation, organogenesis, somatic embryogenesis, haploid and triploid production, protoplast isolation and fusion, hybrid and cybrid, synthetic seed production. Secondary metabolites in plants - Phytochemicals- Glycosides and Flavonoids; Anthocyanins and Coumarins - Lignans, Terpenes, Volatile oils and Saponins; Carotenoids and Alkaloids: biogenesis, therapeutic applications	10	CO1 CO5	K1,K2 &K3		
II	Plant Transformation Direct transformation by	10	CO1	K1,K2 & K5		

	electroporation and particle gun bombardment.		CO2	
	Agrobacterium, Ti plasmid vector. Theory and		CO5	
	techniques for the development of new genetic traits,			
	conferring resistance to biotic and abiotic. Plant			
	engineering towards the development of enriched			
	food products, plant growth regulators; Molecular			
	Marker aided breeding: RFLP maps, Linkage			
	analysis, RAPD markers, STS Mirco satellite, SCAR,			
	SSCP, QTL, Map based cloning and Molecular			
	marker assisted selection.			
	Animal health disease diagnosis, hybridoma			
	technique, monoclonal antibodies, application of			
	probes for disease diagnosis of existing and emerging		CO1	
Ш	animal diseases. Prophylaxis - Vaccines, Oral	10	CO3	K4 & K5
	vaccines DNA Vaccines in animal disease. Cell		CO5	
	culture: primary and established culture; organ			
	culture; tissue culture			
	Disaggregation of tissue and primary culture; cell			
	separation, Slide and coverslip cultures, flask culture,			
	test tube culture techniques, cell synchronization, cryo			
IV	preservation. Scaling up of animal cell culture, cell	10	CO4	K2,K3,K4 & K5
l V	line and cloning micromanipulation and cloning,	10	CO5	K2,K3,K4 & K3
	somatic cell cloning. Karyotyping; measuring			
	parameters for growth, measurement of cell death,			
	apoptosis and its determination, cytotoxicity assays			
	Nuclear magnetic resonance methods of monitoring			
	cell metabolism culturing animal cells in fluidised bed			
•	reactors. Application of animal cell culture for in vitro	10	CO5	K3,K4 & K6
V	testing of drugs, in production of human and animal	10	CO3	K3,K4 & K0
	viral vaccines and pharmaceutical proteins. Culture			
	Scale up and mass production of biologically			
L		<u> </u>		

important compounds. Harvesting of products,		
purification and assays. Transgenic animals:		
Production and application; transgenic animals in		
livestock improvement, transgenic animals as model		
for human diseases; Stem Cells- Properties, Types,		
Therapy, Prospects and Ethics in stem cell research.		

- Razdan. M. K., 2011. Plant tissue culture. Oxford and IBH publishing Company Pvt. Ltd, New Delhi.
- Chawla. H. S., 2010. Introduction to plant biotechnology. Oxford and IBH publishing company pvt. Ltd, New delhi.
- Ian Freshney, 2010. Culture of animal cells. 6th edition, Wiley-Blackwell publishers.
- Slater, 2008. Plant Biotechnology: The Genetic manipulation of plants, Second Edition, Oxford University Press, USA.
- J.D.Watson, Gillman, J.Witknowski and M.Zoller, 2006. Recombinant DNA. 3rd ed.
- W.H.Freeman. 26 K. Dass. 2005, Text book of Biotechnology, Second Edition, Wiley Dreamtech, India (P) Ltd.
- H.Kreuzer & A.Massey. 2001. Recombinant DNA and Biotechnology: A guide for teachers Second Edition. ASM press, Washington.
- M.Sudhir. 2000. Applied Biotechnology & Plant Genetics. Dominant publishers & Distributors.
- Genetic Engineering of Animals by (Ed) A.Puhler, VCH Publishers, Weinheim, FRG, 1993.
- Animal Cell culture Practical approach. Ed. John R.W.Masters, Oxford.2004.
- Concepts in Biotechnology D. Balasubramaniam, Bryce, Dharmalingam, Green, Jayaraman Univ. Press, 1996

Core Paper-9

BIOPROCESS TECHNOLOGY

Paper – 9						
Title of the paper	BIOPROCESS TECH	NOLOGY	Subject cod	le:		
Category of the	Year	Semester		Credits		
course						
Core Paper	2 nd	3	rd	5		

Learning Outcome:

The paper imparts a thorough knowledge on the basics of bioprocess and industrial fermentation. The student will get to understand the core concepts of fermentation and its commercial application.

Course outcomes:

The student will learn about the:

CO-1	(K2) Outline the basis of Bioprocess Engineering
CO-2	(K3) Relate reactors in fermentation
CO-3	(K4) Differentiate fermentation processes
CO-4	(K5) Assess Scale up and Scale down
CO-5	(K6) Compile the output of fermentation processes

SYLLABUS Core Paper-9 BIOPROCESS TECHNOLOGY							
Unit	Content	Hours	COs	Cognitive level			
I	Introduction to fermentation. General requirements of fermentation. Microbial growth kinetics of batch and continuous culture. Solid substrate, slurry fermentation and its application. Microbial cell culture. Immobilization of cells and enzymes. Food Safety: Introduction to food safety aspects and food related hazards – HACCP and ISO.	10	CO1	K1 & K2			
П	Types of bioreactors: Submerged reactors, surface reactors, mechanically agitated reactors, non-	10	CO2	K2,K3 & K5			

	mechanically agitated reactors. Design of fermenters, body construction. Production of citric acid, penicillin			
	and insulin. Isolation and improvement of			
	Industrially important Micro-organisms, Media for			
	Industrial fermentation and Sterilization.			
	Introduction to bioproducts and bioseparation.			
	Primary recovery process: Cell disruption methods.			
	Cell lysis and Flocculation: Osmotic and mechanical			
	methods of lysis. Flocculation by electrolysis;			
III	polymorphic flocculation. Precipitation methods.	10	CO3	K2 & K5
1111	Filtration: Principles, Conventional, Crossflow	10		KZ & KJ
	filtration. Sedimentation: Principles, Sedimentation			
	coefficients. Extraction Principles, Liquid liquid			
	extraction, aqueous two phase extraction, supercritical			
	fluid extraction.			
	Down Stream Processing: Chromatography			
	Techniques, Membrane separation, ultrafiltration.		CO4	
IV	Drying .Principles and operation of vacuum dryer,	10	CO4	K4 & K5
	shelf dryer, rotary dryer, freezer and spray dryer.			
	Crystallization and Whole broth processing.			
	Aerobic and anaerobic fermentation processes and			
	their application in the field of biotechnology			
V	industry. Production of commercially important	10		K3,K4 & K6
	primary and secondary metabolites, Effluent		CO5	
	Treatment and Fermentation Economics.			
		l		I .

- Min-tzeLiong, 2011. Bioprocess Sciences and Technology. NovaScience Pub Inc.
- Michael L.Shuler, FikretKargi. 2003. Bioprocess Engineering. PHIpublishers.
- P.A.Belter, E.L.Cursler, and W.S.Hu. 1988.Bioseparation: Downstream processing for Biotechnology. John Wiley and sons.
- R.G. Harrison, P.Todd, SR.Rudge and D.P. Petrides. 2003.Bioseparation science and engineering. Oxford Press.

Useful Websites:

• www.wildfermentation.com/John Schollar and BenedikteWatmore, Practical Fermentation-a technicalguide web.mit.edu/professional/short.../fermentation_technology.html

PRACTICAL-III

(Bioinformatics, Plant and Animal Biotechnology & Bioprocess Technology)

	PRACTICAL-III (Bioin	nformatics,		
Title of the paper Plant and Animal Biotechn		echnology	Subject code:	
	& Bioprocess Technology)			
Category of the	Year	Year Semo		Credits
course				
Core Paper	2 nd	3	rd	4

Learning Outcome:

The practical will establish a basic study skill on the subject and will improve the student's ability to calculate and improve their practical skill and knowledge.

CO-1	(K2) to learn the Bioinformatics tools for sequence retrieval and
	alignment
CO-2	(K3) to apply the learned tools for various applications
CO-3	(K4) to isolate, identify & enumerate immune cells
CO-4	(K5) to learn the technique of immunodiagnostics
CO-5	(K6) to study upstream & downstream techniques

	SYLLABUS PRACTICAL-III					
Unit	Content	Hours	COs	Cognitive level		
	(A) Bioinformatics-practical 1. Sequence retrieval from Genbank					
A	 Sequence retrieval from Uniprot. Sequence identity search- Sequence similarity search using BLAST Sequence similarity search using FASTA Sequence similarity search using PSI BLAST Sequence similarity search using PHI- BLAST. Prediction of signal sequence using SignalP online tool Pattern Search (Domains & Motifs) using Pfam ORF gene Search - Genscan Sequence translation using ExPASy translate tool Characterization of retrieved protein sequence by ProtParam tool. Pair-wise global sequence alignment using EBI- 	15	CO1 CO2 CO3 CO4 CO5	K1,K2,K3,K4 &K5		

	EMBOSS Needleman Wunsch tool			
	13. Pair-wise local sequence alignment using EBI-EMBOSS Smith Waterman tool			
	14. Multiple sequence alignment using EBI-			
	CLUSTALW2. 15. PHYLOGENY- Phylogenetic tree using PHYLIP.			
	16. Prediction of secondary protein structure using			
	GOR (Garnier Osguthorpe-Robson) server.			
	17. Prediction of tertiary protein structure using			
	SWISS-MODEL Server 18. Validation of the predicted structure using			
	PROCHECK server			
	19. Molecular visualization of proteins using RASMOL.			
	20. Docking of small molecule with protein structure			
	using Hex software.			
	21. Docking of two proteins using PatchDock (Protein-Protein docking) tool.			
	22. Retrieval of E.Coli glycolytic pathway from			
	KEGG			
	B) Plant and Animal Biotechnology - Practical:			
	1. Plant tissue culture media preparation			
	2. Plant tissue culture sterilization techniques.			
	3. Generation of Callus from leaf			
	4. Generation of Callus from root			
	5. Generation of Callus from bud			
	6. Generation of Callus from shoot apex		CO1	
	7. Maintenance of callus culture.		CO2	
В	8. Cell suspension culture	15	CO3	K2,K3,K4
	9. Anther culture		CO4	
	10. Pollen culture		CO5	
	11. Embryo culture.			
	12. Isolation of plant protoplast			
	13. Culture of plant protoplast.			
	14. Protoplast viability test.			
	15. Localization of nucleus using nuclear stain.			
	16. Agrobacterium culture maintenance and isolation			

	of plasmid DNA.			
	17. Mass culture of Chlorella /Spirulina			
	18. Introduction to Animal Cell culture: Procedure for			
	handling cells and medium.			
	19. Cleaning and sterilization of glassware and plastic			
	tissue culture flasks			
	20. Preparation of tissue culture media			
	21. Preparation of sera for animal cell culture			
	22. Preparation of single cell suspension from chicken			
	liver (Primary cell culture).			
	23. Trypsinization of established cell culture.			
	24. Cell counting and viability - staining of cells (a)			
	Vital Staining (Trypan blue, Erythrosin (b) Giemsa			
	staining.			
	25. MTT Assay			
	(C) Bioprocess Technology – Practical			
	 Parts and design of fermenter Solid state fermentation Submerged fermentation Foaming and antifoaming agents 			
C	 Founding and antiforming agents Media preparation and sterilization Isolation of industrially important microorganisms for microbial processes. Conservation of Bacteria by Lyophilization. Production and estimation of protease Production and estimation of amylase. Production of wine using grapes 	15	CO1 CO2 CO3 CO4	K2,K3,K4 & K5

Elective Paper-5 NANO BIOTECHNOLOGY

Paper – 5						
Title of the paper NANO BIOTECHNOLOGY Subject code:						
Category of the course	Year	Semester		Credits		
Elective Paper 2 nd 3 rd		rd	3			

Learning Outcome:

The subject imparts knowledge on the fundamentals of nanoparticles. The student will be provided with a basic knowledge and understanding about the role of nanoparticles in biotechnology.

Course outcomes:

CO-1	Understand the bases for Introduction to Nanotechnology
CO-2	To impart understanding on Nanoparticle based Drug Delivery.
CO-3	Fabrication of nanomaterials for bone tissue grafting
CO-4	Methods of Nanofabrication
CO-5	Understand the application of Nanotechnology

	SYLLABUS Elective Paper-5 NANO BIOTECHNOLOGY					
Unit	Content	Hours	COs	Cognitive level		
I	Introduction to Nanotechnology- Scientific revolution, Feynman's vision, Classification of nanobiomaterials -Types of nanomaterials - nanoparticles, nanotubes, nanowires, Nanofibers, Size decendent variation in the properties of Nanomaterials, Nature's Nanophenomena.	7	CO1	K1		
II	Preparation of Nanomaterials, Top down and bottom up approaches, Biosynthesis, Nanobiomaterials-Polymer, Ceramic, Metal based Nanobiomaterials, Carbon based Nanomaterials, DNA based Nanostructures, Protein based Nanostructures, Quantum dots, Magnetic Nanoparticles, Nanofibres, Hydrogels, Films and Scaffolds.	7	CO2	K4		

III	Application of Nanomaterials in Bone substitutes and Dentistry, Food and Cosmetic applications, Biosensors and Lab-on-a-chip, Bio-devices and implantable devices, Bioremediation, Nanomaterials for anti-microbial coating – medical implants and paints, Application of Nanotechnology in textile industry.	7	CO3	K1 & K5
IV	Nanomaterials for diagnosis and therapy, Implications of drug delivery, Nano-carriers for application in medicine, polymeric nanoparticles as drug carriers, Drug release mechanism, Targeted Drug Delivery using nanocarriers, Nanoparticle technologies for cancer therapy and diagnosis, Point of Care and Personalized medicine, Magnetic nanoparticles for imaging and Hyperthermia.	7	CO4	K2
V	Nanotoxicology, Portals of Entry of the nanoparticles into the Human Body, Bio-toxicity of Nanoparticles, Nanoparticles in Mammalian systems and Health threats, Biological response and cellular interaction of implant materials and scaffolds, Risk assessment and Safety Regulation of nanoparticles.	7	CO5	K5

- Nanotechnology, S.Shanmugam, Mjp publication. 2011.
- Advanced nanomaterials, kurt E. geckeler, Hiroyuki Nishide, Wiley VHC.2010.
- Nanotechnology and tissue engineering. T.Laurencin, Lakshmi S. Nair, CRC press. 2012.
- Handbook of carbon nanomaterials. Francis D souza, Karl M. Kadish.
- World scientific publishing co. pte. ltd. 2011.
- Oded Shoseyov (Editor), Ilan Levy, 2010. NanoBioTechnology: BioInspired Devices and Materials of the Future, Humana Press.
- Chad A. Mirkin and Christof M. Niemeyer, 2007. Nanobiotechnology II: More Concepts and Applications, Wiley-VCH.
- Challa S.S.R.Kumar (Ed). 2006. Biologicals and pharmaceutical nanomaterials, Wiley-VCH Verlag Gmbh & Co, KgaA.
- K.K.K.Jain 2006. Nanobiotechnology in Molecualr Diagnostics: Current Techniques and Applications Horizon Bioscience
- Niemeyer, C.M., Mirkin, C.A. (Eds). 2004. Nanobiotechnology Concepts, Applications and Perspectives, Wiley-VCH, Weinheim.
- Andrze w. Miziolek, Shashi P.Karna, J malthew Mauro and Richard A.Vaia. 2005 Defense Applications of Nanomaterials:
- Springer Handbook of Nanotechnology- Ed. by B. Bhushan, Springer-Verlag (2004)
- The Chemistry of Nanomaterials: Synthesis, Properties and Applications, C.N.R. Rao, A. Muller, A. K. Cheetham (Eds), Wiley-VCH Verlag (2004)
- Nanomaterials for medical diagnosis and therapy, Challa Kumar, Wiley-VCH, 2007.
- Nanotechnology for cancer therapy, Mansoor M. Amiji, CRC Press, 2007.
- K.K.Jain, Nano Biotechnology, Horizions Biosciences, 2006
- Nanomaterials: An introduction to synthesis, properties and application, Dieter Vollath, Wiley VCH, 2008
- Cato T. Laurencin and Lakshmi S. Nair, Nanotechnology and Tissue Engineering The
- Scaffold, CRC Press taylor& Francis Group.
- Introduction to Nanoscience and Nanotechnology, Gabor .L et al, Fundamentals of Nanotechnology, Hornyak, G. Louis, Tibbals, H. F., Dutta, Joydeep, CRC Press, 2009.
- Assessing Nanoparticle Risks to Human Health, Gurumurthy Ramachandran, Elesvier, 2011.
- Nanotechnology: Environmental Health and safety, Risks, Regulation and Management, Matthew Hull and Diana Bowman, Elsevier, 2010.
- Nanotechnology: Health and Environmental Risks, Jo Anne Shatkin, CRC Press, 2013

Useful Websites:

http://www.zyvex.com/nano www.fda.gov/nanotechnology/ www.nature.com/nnano/

Non-Major Elective Paper -II Basic Tools in Biotechnology

NME-IIA						
Title of the paper Basic Tools in Biotechnology Subject code:						
Category of the	Year	Semester		Credits		
course						
Elective Paper	II year	II	Ird	3		

Learning Outcome:

The subject imparts knowledge in basic aspects of biotechnology. Know the basic tools and techniques in Biotechnology.

Course outcomes:

On successful completion of the course the students will be able to

CO-1	(K2) Knowledge of genes and genomics
CO-2	(K3) Basics of genetic engineering.
CO-3	(K4) Tools and techniques of gene manipulation
CO-4	(K5) Methods used in screening and selection.
CO-5	(K6) Application of r-DNA tools in plant and animal biotechnology.

	SYLLABUS Non-Major Elective Paper- Basic tools in Biotechnology					
Unit	Content	Hours	COs	Cognitive level		
I	Unit: 1 Gene and Genomes Gene and genomes: Prokaryotic and eukaryotic genomes - structure and form. DNA as the genetic material. Extra chromosomal DNA - plasmid. Central dogma – DNA-RNA-Protein	2	CO1	K2		
II	Unit: 2 Cloning Vectors and rDNA Technology Cloning vectors: Plasmid, phagemid, cosmid, artificial chromosomes - BAC. rDNA technology overview. Transformation techniques - CaCl2 transformation technique and electroporation.	2	CO1 CO2	К3		
Ш	Unit: 3 Tools for Gene Manipulation Tools for gene manipulation: Restriction enzymes, DNA ligases, DNA modifying enzymes - alkaline	2	CO1 CO3	K4		

	phosphatase, polynucleotide kinase, and terminal transferase. PCR, Gel Electrophoresis - AGE and PAGE.			
IV	Unit: 4 Selection Strategy and Screening of Transformants Selection strategy and screening of transformants: Selection of rDNA clones - Blue-White selection, Markers for selection - selectable and scorable - examples. Colony hybridization, western blotting, Southern blotting, and northern blotting.	2	CO2 CO4	K5
V	Unit: 5 Application of rDNA Tools Application of rDNA Tools: Cloning of insulin gene in bacteria, gene therapy, GMO -application and biosafety issues.	2	CO5	K6

- 1. Primrose. S.B., Twyman R.M. (2014) Principles of Gene Manipulation and Genomics,7th Edition, Blackwell Science Limited.
- 2. Primrose .S.B (1994) Molecular Biotechnology., Blackwell Scientific Publishers, Oxford.
- 3. Alberts. B., Johnson. A.D., Lewis. J., Morgan. D (2014) Molecular Biology of the Cell.
- 4. Brown, T. A. (2006). Genomes (3rd ed.). New York: Garland Science Pub.
- 5. Old, R. W., Primrose, S. B., &Twyman, R. M. (2001). Principles of Gene Manipulation: an Introduction to Genetic Engineering. Oxford: Blackwell Scientific Publications.

Brown T. A. (2016) Gene Cloning and DNA Analysis. An Introduction, 7th Edition Blackwell

Scientific Publications.

Non-Major Elective Paper

ENVIRONMENTAL SCIENCES

NME-IIB							
Title of the paper ENVIRONMENTAL SCIENCES Subject code:							
Category of the	Year	Semester		Credits			
course							
Elective Paper	II year	II	I^{rd}	3			

Learning Outcome:

The paper imparts knowledge on the basics of fundamentals of ecology and pollution. The student will be provided with a basic knowledge and understanding about the functions of ecosystem and reduction of pollution.

Course outcomes:

On successful completion of the course the students will be able to

CO-1	(K2) Students understand the basics of Environment.
CO-2	(K3) Students understand the distribution of life and life forms on earth.
CO-3	(K4) Students will be aware of the basic structure and functions of ecosystem.
CO-4	(K5) Students understand the distribution and cycling of energy and matter in
	the Environment.
CO-5	(K6) Knowledge of different case studies, tragic Incidents.

SYLLABUS Non-Major Elective Paper-6 VERMICULTURE TECHNOLOGY					
Unit	Content	Hours	COs	Cognitive level	
I	Definition, Principle and Scope of Environmental Sciences. Earth, Man and Environment Interactions. Geographical Classification and Zones – Torrid, Temperate and Frigid Zones. Significance of Atmosphere, Lithosphere, Hydrosphere and Biosphere. Environmental Pollution: Definition and Types (Air, Water and Soil).	2	CO1	K2	

П	Air Pollution - Sources and Classification of Air Pollutants - Sinks of Air pollutants - Automobile pollution in India - Zero emission standards. Water pollution; Classification of water pollutants, Ground water pollution, Sources and sinks, Eutrophication. Soil pollution Sources, sinks and broad classification, movement and sorption mechanisms of organic and inorganic contaminants and their impacts on physiochemical and biological properties of soil and plants.	2	CO1 CO2	К3
Ш	Ecosystems and natural balance – biodiversity, Population and Growth trends, Animal and Human Population, Health related issues - Indoor and Outdoor air pollution, Persistent organic pollutants (POP's) Water borne infections (Salmonellosis, Cholera, Shigellosis) heavy metal related diseases (Cd-Itai-Itai, Hg-Minamata, Pb-Neurotoxin).	2	CO1 CO3	K4
IV	Bio energy – Definition, sources, types and characteristics - characteristics and energy content of coal, petroleum and natural gas. Energy use pattern in India and the world, emissions of CO2 in and global warming.	2	CO2 CO4	K5
V	Case Studies – London Smog, Minamata Disease, Love Canal, Bhopal Gas Tragedy, Chernobyl Disaster. Biodiversity – Definition, Concept and Types.	2	CO5	K6

- 1. Environmental Science, Botkin, Keller (2012), John Wiley & Sons.
- 2. Environmental Science, G. Tyler Miller, Scott E. Spoolman (2014), Cengage Learning.
- 3. Environmental Pollution and its Control, Abbasi. S. A (1998), Cogent publications (P).
- 4. Environmental Pollution and its Control, Bhatia H.S (1998) ,Golgotia publications (P) Limited, New Delhi.
- 5. Air Pollution and Plant Life, (II ed.) Bell, J.N.B. (2002) John Wiley and Sons, New Delhi.
- 6. Air Pollution, Rao M.N and H.V.N Rao (1989, Tata Mcgraw Hill Publishing Co. Ltd,.
- 7. Soil and Noise Pollution, Sharma, B.K. and H. Kaur (1994) Goel Publishing House.
- 8. Water Pollution, Sharma, B.K. and H. Kaur (1994) Goel Publishing House.
- 9. Introduction to Bioenergy (Energy and the Environment) by Vaughn C. Nelson (Author), Kenneth L. Starcher (Author).
- 10. Bioenergy by Judy D. Wall and Caroline S. Harwood.
- 11. Bioenergy: Sustainable Perspectives by Ted Weyland.
- 12. Environmental Issues and Sustainable Development, S. C. Kalwar (2002), Pointer Publishers.

Non-Major Elective -IIC BASICS IN PHARMACEUTICAL BIOTECHNOLOGY

Title of the paper	BASICS IN		Subject code:	
	PHARMACEUTICAL			
	BIOTECHNOLO	OGY		
Category of the	Year	Semester		Credits
course				
Elective Paper	1 st	II	I	3

Learning Outcome:

The subject imparts knowledge on the fundamentals of pharmaceutical biotechnology and the pharmaceutical products produced based on biotechnological methods.

Course outcomes:

CO-1	Explain the basic components of pharmaceutical and biotechnology industry.
CO-2	Knowledge of Scientific, technical and economic aspects of vaccine
CO-3	Knowledge of production of antibodies and biotech products.
CO-4	Know basics of drugs and pharmacology.
CO-5	Knowledge about therapeutics and factors affecting drug action.

S	YLLABUS NME-IIC BASICS IN PHARMACEUT	ICAL BIO	OTECH	NOLOGY
Unit	Content	Hours	COs	Cognitive level
UNIT I	Drug- Structural feature and pharmacology activity. Ethno pharmacology: Scope, applications and Importance.	03 hours	CO1	K1
UNIT- II	Scientific, technical and economic aspects of vaccine development - Preparation of bacterial vaccines, Storage conditions and stability of vaccines, Methods of enzyme immobilization and applications.	03 hours	CO2	K3 & K4
UNIT – III	Hybridoma technology - Production, Purification and applications and formulation of biotech products - Penicillin, citric acid and Vitamin B12, Bio safety in pharmaceutical industry.	03 hours	CO3	K2

UNIT – IV	Pharmacological activity of Plant drugs in modern pharmacology; Drug improvement by structure modification and bio-transformation.	03hours	CO4	K2 & K4
UNIT- V	Clinical Pharmacology, Mechanism of drug action, Therapeutic efficacy, Therapeutic index, tolerance, dosage forms and routes of drug action. Factors affecting drug action and classification of drugs.		CO5	K1,K2 &K5

- Kayser, O and Muller R.H.. 2004. Pharmaceutical Biotechnology Drug Discovery and Clinical Applications. WILEY-VCH
- Stefania Spada, Garywalsh. 2004. Directory of approved biopharmaceutical
- Heinrich Klefenz. 2002. Industrial pharmaceutical biotechnology.
- John F. Corpenter (editor), Mark C. Manning. 2002. Rational Design of stable formulation Theory and Practice (Pharmaceutical Biotechnology). Plenum, US. Ist edition.
- D.I.A. Crommelin, et al., 2002. Pharmaceutical Biology. Amazon prime publications.

Useful Websites:

- https://tugasakhirsttifbogor.files.wordpress.com/2018/08/pharmaceutical-biotechnology.pdf
- http://library.nuft.edu.ua/ebook/file/Gad2007.pdf

INTERNSHIP

Title of the paper	INTERNSHI	P Subject co	de:
Category of the course	Year	Semester	Credits
Paper	2 nd	3 nd	2

Learning Outcome:

To gain hands on training and expertise in handling sophisticated instruments and acquire in depth knowledge in their applications.

Course outcomes:

The student will learn to

CO-	(K2) understand working principles and the techniques of various
1	processes
CO-	(K3) apply standard operating procedures followed in industries
2	
CO-	(K3) prepare to face challenges & gain confidence in the field of study.
3	
CO-	(K5) critically assess the utilization of sophisticated instruments and
4	expensive consumables
CO-	(K6) develop work ethics to be followed in a scientific laboratory
5	

Core Paper-11 RESEARCH METHODOLOGY

Paper – 11					
Title of the paper	RESEARCH METHO	DOLOGY	Subject cod	le:	
Category of the	Year	Semester		Credits	
course					
Core Paper	2 nd	4	th	5	

Learning Outcome:

The paper imparts a thorough knowledge on the basics of academic research. The student will get to understand the core concepts of methodologies & ethics to pursue research.

Course outcomes:

CO-1	Understand the bases for research
CO-2	To know about research proposal and dissertation writing.
CO-3	To know about Statistical application in research
CO-4	To know about office tools used in research
CO-5	To know about search engines.

	SYLLABUS Core Paper-11 RESEARCH M	1ETHOD	OLOG	Y
Unit	Content	Hours	COs	Cognitive level
	Research Methodology - An Introduction: Meaning of			
	Research, Objectives of Research, Types of Research,			K 1
	Research Approaches, Importance of knowing how			
I	research is done, Research Process, Criteria of good	10	CO1	
1	research. Defining the Research Problem; Research	10		KI
	Design; Sampling Design; Methods of Data			
	Collection; Processing and Analysis of Data;			
	Sampling Fundamentals			
	Review of literature, Writing the Research Report			
	(Thesis and publications): Components of research			
II	report - Title, Authors, Addresses, Abstract,	10	CO2	K2 &K6
	Keywords, Introduction, Materials and Methods,			
	Results, Discussion, Summary, Acknowledgements			

	and Bibliography			
III	Standard Deviation- T test. Analysis of Variance components (ANOVA) for fixed effect model; Total, treatment and error of squares, Degrees of freedom, Confidence interval; ANOVA for random effects model, Estimation of variance components, Model adequacy checking. Two factor Factorial Design, Basic definitions and principles, main effect and interaction, response surface and contour plots, General arrangement for a two factor factorial design	10	CO3	К3
IV	Spreadsheet Tool: Introduction to spreadsheet application, features and functions, Using formulas and functions, Data storing, Features for Statistical data analysis, Generating charts/ graph and other features. Presentation Tool: Introduction to presentation tool, features and functions, Creating presentation, Customizing presentation, Showing presentation. Tools used may be Microsoft Power Point, Open Office or similar tool	10	CO4	K1 & K4
V	Web Search: Introduction to Internet, Use of Internet and WWW, Using search engine like Google, Yahoo, Pubmed, Science direct, Scopus etc, and Using advanced search techniques	10	CO5	K1 & K2

- Montgomery, Douglas C. (2007), 5/e, Design and Analysis of Experiments, (Wiley India).
- Montgomery, Douglas C. & Runger, George C. (2007), 3/e, Applied Statistics & Probability for Engineers (Wiley India).
- Kothari C.K. (2004), 2/e, Research Methodology- Methods and Techniques (New Age International, New Delhi).
- Krishnaswamy, K.N., Sivakumar, Appa Iyer and Mathiranjan M. (2006), Management Research Methodology; Integration of Principles, Methods and Techniques (Pearson Education, New Delhi).
- The complete reference Office Xp Stephan L. Nelson, Gujulia Kelly (TMH).
- Basic Computer Science and Communication Engineering R. Rajaram (SCITECH).

Useful Websites

• www.ask.com/Methodology+Researchwww.qmethod.org/

Core Paper-12

BIOSTATISTICS

Paper – 12					
Title of the paper BIOSTATISTICS Subject code:					
Category of the course	Year	Semester		Credits	
Elective Paper	2 nd	4	th	3	

Learning Outcome:

The paper imparts a thorough knowledge on the basics of all the statistical concepts, in biology. The student will get to understand the core concepts of computation principles for the data analysis.

Course outcomes:

At the end of the Course, the Student will be able to:

CO-1	To understand the major Methods of collection & presentation of data
CO-2	To provide basic knowledge about methods of analysis of variance
CO-3	To enlighten the students about the methods of setting hypothesis and calculation of
	errors.
CO-4	To update the knowledge on Tests of significance for large and small samples.
CO-5	To assess and appraise the role of novel microbes in environment and integrate them
	in specific innovative approaches.

SYLLABUS Elective Paper-12 BIOSTATISTICS					
Unit	Content	Hours	COs	Cognitive level	
I	Statistics – Scope –collection, classification, tabulation of Statistical Data – Diagrammatic representation – graphs – graph drawing – graph paper – plotted curve –Sampling method and standard errors –random sampling – use of random numbers – expectation of sample estimates – means – confidence limits – standard errors – variance. Measures of central tendency – measures of dispersion – skewness, kurtosis, moments	7	CO1 CO2 CO3	K1,K2,K3 & K4	
II	Correlation and regression - correlation table -	7	CO1	K1,K2,K3 & K4	

	coefficient of correlation – Z transformation –		CO2	
	regression – relation between regression and		CO5	
	correlation. Probability – Markov chains applications			
	- Probability distributions - Binomial (Gaussian			
	distribution) and negative binomial, compound and			
	multinomial distributions – Poisson distribution			
	Normal distribution – graphic representation.–			
	frequency curve and its characteristics -measures of			
	central value, dispersion, coefficient of variation and		CO1	
Ш	methods of computation - Basis of Statistical	7	CO4	K1,K2,K3 & K4
	Inference - Sampling Distribution - Standard error -		CO5	
	Testing of hypothesis – Null Hypothesis – Type I and			
	Type II errors			
	Tests of significance for large and small samples			
	based on Normal, t, z distributions with regard to			
	mean, variance, proportions and correlation		CO1	
	coefficient - chi-square test of goodness of fit -		CO2	
IV	contingency tables – c2 test for independence of two	7	CO3	K1,K2,K3 & K4
	attributes – Fisher and Behrens 'd' test – 2×2 table –			
	testing heterogeneity – r X c table – chi-square test in			
	genetic experiments – partition X 2 – Emerson's			
	method			
	Tests of significance –t tests – F tests – Analysis of			
V	variance – one way classification – Two way	7	CO1	
	classification, CRD, RBD, LSD. Spreadsheets – Data		CO2	
	entry –mathematical functions – statistical function –		CO4	K1,K2,K3 & K4
	Graphics display – printing spreadsheets – use as a		CO5	
	database word processes – databases – statistical			
	analysis packages graphics/presentation packages			

- Veer bala Rastogi. 2011. Fundamentals of Biostatistics. Ane books Pvt Ltd, Chennai.
- Rosner, B (2005), "Fundamentals of Biostatistics", Duxbury Press.
- Warren,J; Gregory,E; Grant,R (2004), "Statistical Methods in Bioinformatics",1st edition, Springer
- Milton, J.S. (1992),. "Statistical methods in the Biological and Health Sciences", 2nd edition ,Mc Graw Hill,
- Sundar Rao P. S.S., Jesudian G. & Richard J. (1987), "An Introduction to
- Biostatistics", 2nd edition,. Prestographik, Vellore, India,.
- Zar, J.H. (1984) "Bio Statistical Methods", Prentice Hall, International Edition

Useful Websites:

- www.statsoft.com/textbook/biosun1.harvard.edu/
- www.bettycjung.net/Statsites.htm
- www.ucl.ac.uk/statistics/biostatistics

DISSERTATION

Title of the paper	tle of the paper DISSERTATION Subje		de:
Category of the	Year	Semester	Credits
course			
Core Paper	2 nd	4 th	7

Learning Outcome:

The paper imparts a thorough knowledge on the basics of academic research. The student will get to understand the core concepts of pursuing research.

Elective Paper-6 STEM CELL BIOLOGY

Paper – 6					
Title of the paper	Title of the paper STEM CELL BIOLOGY Su		Subject cod	le:	
Category of the	Year	Semester		Credits	
course					
Elective Paper	2 nd	4	th	3	

Learning Outcome:

The subject imparts knowledge on the fundamentals of stem cells. The student will be provided with a basic knowledge and understanding about the application of stem cell biology.

Course Outcomes:

At the end of the Course, the Student will be able to:

CO1	To understand the major discoveries of stem cell biology
CO2	To provide basic knowledge about stem cell niche and functions
CO3	To enlighten the students on Stem cell isolation and culture techniques
CO4	To update the knowledge on Stem cell cycle
CO5	To assess and appraise Applications of Embryonic stem cells.

SYLLABUS Elective Paper-6 STEM CELL BIOLOGY					
Unit	Content	Hours	COs	Cognitive level	
I	Stem cells - Definition, Characterization, Pluripotency, Self-renewal and differentiation. Types of stem cells- Embryonic stem cells, Adult stem cells and mesenchymal stem Cells, Adipose stem cells	7	CO1	K1	
II	Stem cell niche, Niche specification - Drosophila germ line stem cells. Receptors, genes and markers of stem cells	7	CO2	K1 & K2	
Ш	Stem cell isolation and culture techniques. Characterization of stem cells	7	CO3	K3, K4	
IV	Stem cell cycle. Chromatin modification and	7		K3,K3 & K5	

	transcriptional regulation, chromatin modifying		CO4	
	factors, Chromosomal inactivation. JAK -STAT			
	pathway, Ras\Raf pathway, PI3K cell signaling, p53			
	check points, Role of LIF pathway in cell cycle			
	control			
	Applications of Embryonic stem cells, Bone marrow			
V	stem cells, Adipose derived stem cells and	7 C	CO5	K3,K4 & K5
	Hematopoietic stem cells. Ethics in human stem cell		003	
	research			

- Stem Cell Biology, Daniel Marshak, Richard L. Gardener and David Gottlieb, Cold Spring Harbour Laboratory Press
- Stem cell biology and gene therapy, Booth C., Cell Biology International, Academic Press
- Stem Cell and Gene-Based Therapy: Frontiers in Regenerative Medicine, Alexander Battler, Jonathan Leo, Springer, STEM CELL TECHNOLOGY Syllabus Semester First References:
- Stem Cell Biology and Gene Therapy. Quesenberry PJ, Stein GS, eds. (£65.00.) Wiley, 1998.
- Progress in gene therapy, Volume 2,Pioneering stem cell/gene therapy trials, Roger Bertolotti, Keiya Ozawa and H. Kirk Hammond, VSP international science publishers
- Stem Cells Handbook: Stewart Sell, Humana Press; Totowa NJ, USA; Oct. 2003,
- Human Embryonic Stem Cells: The Practical Handbook by Stephen Sullivan and Chad A Cowan

•