THIRUVALLUVAR UNIVERSITY

VELLORE - 632 115

DEPARTMENT OF CHEMISTRY

MASTER OF SCIENCE IN CHEMISTRY

[Under Choice Based Credit System (CBCS)]

w.e.f the academic year 2023-24

SYLLABUS AND REGULATIONS FOR UNIVERSITY DEPARTMENT

ABOUT THE DEPARTMENT

The department of chemistry was established in 2002 as post-graduate and research department. The full fledged department was started during academic year 2010-11. The department is offering the M.Sc., M.Phil. and Ph.D courses. The department consists of 6 faculty members, 1 administrative staff, 32 research scholars and 52 PG students. The faculty members have been working on the modern and thrust areas in chemistry with financial support from various national funding agencies such as DST, DRDO, BRNS, UGC etc., and continued to publish quality research papers in both national and international journals.

VISION AND MISSION

Statement of Vision

Chemistry provides immense scope for study, research andgainful employment in various sectors. The Department of Chemistry of Thiruvalluvar University is determined to educate and graduate rural students. The department is committed to prepare, compete in and contribute to the needs of modern chemical science based industries and academia. To achieve this vision, the department is dedicated to provide a course of study for post-graduate in chemistry which combines curriculum and research oriented project that are high-quality, innovative and intellectually challenging.

Statement of Mission

The mission of the Department of Chemistry of Thiruvalluvar University is to advance the chemical sciences through the education of post-graduate students in rural society by providing them with quality classroom learning and research opportunities. The department is committed to impart a high standard for excellence in all branches of chemistry by innovative and dedicated teaching at post-graduate level to produce students with good knowledge in chemistry.

THIRUVALLUVAR UNIVERSITY Department of Chemistry M.Sc., Chemistry (University Department) UNDER CBCS (With effect from 2023-24)

The course of study and scheme of examinations

1.	TIT	LE:	M.Sc.,	Chemistry
----	-----	-----	--------	-----------

2.YEAR OF IMPLIMENTATION: July 2023 onwards

3.COURSE DETAILS:

Total No. of Semesters	– 04 (Two semesters per year)
No. of theory papers per semester	- 04/05
No. of practical courses per semeste	er – 02 (upto II semester)
Total No. of Practicals	- 06
Project	– IV semester

4.PREAMBLE OF THE SYLLABUS:

Master of Science (M.Sc.) in Chemistry is a post graduation course of Thiruvalluvar University. The curriculum is prepared by following the prospectus of various national and international universities. The board of studies revised the syllabus of M.Sc., Chemistry in 2018 and the new revised syllabus covers broad area of fundamental aspects in modern chemistry.

The syllabi are all set to meet the standard of CSIR-UGC-NET, GATE and SLET examinations. The credit system to be implemented through this curriculum would allow students to develop a strong footing in the fundamentals and specialize in the disciplines of his/her liking and abilities. The students pursuing this course would have to develop in-depth understanding of various aspects of chemistry. The conceptual understanding, development of experimental skills, designing and implementation of novel synthetic methods, developing the aptitude for academic and professional skills, acquiring basic concepts for structural elucidation with hyphenated techniques, understanding the fundamental biological processes and rationale towards computer. The project introduced in the curriculum will motivate the students to pursue the research and find a job in reputed pharmaceutical and other industries including abroad.

5. REQUIREMENT TO APPEAR FOR THE EXAMINATION

- (i) Minimum 75% attendance required for both theory and practical examinations.
- (ii) Attendance of less than 75% but 65% and above has to pay the condonation fee prescribed by the university.

(iii) Attendance less than 65% but 55% and above has to compensate the shortage of attendance in the subsequent semester (in the next year).

(iv) Attendance less that 55% has to rejoin / redo the semester.

(v) In the case of married woman, the minimum attendance should not be less than 55%.

6. PATTERN OF EXAMINATION

Evaluation of Students:

1. All Semester examinations both theory and practical will be of 100 marks each.

2. Student has to obtain 50% marks in all the examinations (both theory and practicals).

7.FEE STRUCTURE: As per Thiruvalluvar University norms

8.ELGIBILITY FOR ADMISSION

A candidate who has passed the B.Sc., degree examination with Chemistry as the main subject of study of this university or an examination of any other university accepted by the syndicate as equivalent thereto shall be eligible for admission to the M.Sc., degree in chemistry in the university department.

9. MEDIUM OF INSTRUCTION: English.

10.SCHEME OF EXAMINATION

• The semester examination will be conducted at the end of each semester (Both theory & practical examination), for odd semesters in the month of November/December; for even semester in April/May. All theory examination is conducted for 3 hours irrespective of total marks. However, duration of practical examinations is 6 hours.

• **Theory paper** will be of 75 marks each for university examination and 25 marks for internal evaluation.

• Theory question pattern

Section-A $10 \times 2 = 20$ marks Section-B $5 \times 5 = 25$ marks (200 words; Either or type) Section-C $3 \times 10 = 30$ marks (500 words; 3 out of 5) **Total = 75 marks**

The question papers will be set by the internal and the scrutiny of the question paper will be done by external. Evaluation of answer scripts will be done by internal.

• Internal Assessment

Test	: 10 marks (best 2 out of 3)
Assignment	: 10 Marks
Seminar	: 05 Marks
Total	: 25 marks

There shall be tutorial / practical / surprise test / home assignment / referencing of research papers / seminar / industrial visit / training course as a part of internal assessment in each semester. The students are supposed to attend all the tests. The students should note that re-test will not be given to the student absent for the test/s.

• **Practical examination** will be of 75 marks each for university examination and 25 marks for internal evaluation.

Distribution of marks for practical examinations

University Examination Experiment	: 75 Marks
Procedure	: 5 marks
Experiment	: 30 marks
Interpretation	: 10 marks
Result	
Practical viva-voce	: 10 marks
Record	: 10 Marks
Total	: 75 marks
Practical Internal Assessment	
Number of Experiments	: 10 marks
Performance	: 10 Marks
Test	: 5 Marks
Total	: 25 marks
Passing Minimum in practical examinations	
IA	: 12 Marks (50 %)
UE	: 38 Marks (50 %)
Total	: 50 Marks
All the practical examinations will be	conducted for 6 hours only i.e.

10 AM – 4PM by both the internal examiners.

• For the project report

Report	: 75 marks
Viva-voce	: 25 marks
Total	: 100 Marks

Distribution of marks for project report (Total of 100 marks)

Project will be evaluated by the concerned project guide along with a member nominated by the Head of the Department.

Assessment will be done by the departmental committee every month. Evaluation will be on the basis of monthly progress of project work, progress report, referencing, oral, results and documentation.

Project - 75 marks

(Dissertation Format – 10 marks; Scope of the research problem – 20 marks; Methodology – 20 marks; Analysis – 10 marks, Results and findings-15 marks)

Viva-Voce examination – 25 marks

(Presentation – 10 marks; subject knowledge – 10 marks; Interaction – 5 marks)

11.Question papers will be set in the view of the entire syllabus and preferably covering each unit of the syllabus.

12. STANDARD OF PASSING

A candidate should get not less than 50% in the university examination, compulsorily, in all papers, including practicals. Also, the candidate who secures not less than 50% marks in the UE and IA examinations put together in any theory paper/practical shall be declared to have successfully passed the examination.

• Internal marks will not change. Student cannot repeat internal assessment. If student misses internal assessment examination, s/he will have to score passing minimum in the external examinations only.

Illustration: Theory – Internal Assessment -12 marks and University Examination-38 marks

OR

Internal Assessment-0 marks and University Examinaiton-50 marks.

- There shall be revaluation of answer script of end semester examination, but not of internal assessment papers.
- Internal assessment answer scripts may be shown to the concerned student but not end semester answer script.

✤ A candidateshall be declared to have passed the whole examination if the candidate passes in all theory and practical by earning 94 credits in core and elective subjects.

13. TRANSITORY PROVISION

This curriculum is valid for three years only (2018-19 to 2020-21), as per UGC norms. Hence, candidates who have undergone M.Sc., Chemistry course in the University department will be permitted to re-appear for next two consecutive years only. After that, he/she has to re-appear for the examinations under new curriculum, regulations, which are in force at that time.

CONTENTS

1.		Preamble
2.		Structure of Course
3.		Learning and TeachingActivities
4.		Tutorial activities
5.		Laboratory Activities
6.		Field Study Activities
7.		Assessment Activities
	7.1	Assessment principles
	7.2	Assessment Details
8.		Teaching methodologies
9.		Faculty Course File
10.		Template for PG Programme in Chemistry
11.		Template for Semester
12.		Instructions for Course Transaction
13.		Testing Pattern
14.		Different Types of Courses
15.		Elective Courses (ED from other Department Experts)
16.		Skill Development Courses
17.		Institution-Industry-Interaction
18.		Model Syllabus

	LATIONS ON LEARNING OUTCOMES-BASED CURRICULUM
	MEWORK FOR POSTGRADUATE EDUCATION
Programme	M. Sc., Chemistry
Programme Code	
Duration	PG – 2YEARS
Programme	PO1: Problem Solving Skill
Outcomes (Pos)	Apply knowledge of Management theories and Human Resource practices to solve business problems through research in Global
	context.
	PO2: Decision Making Skill
	Foster analytical and critical thinking abilities for data-based decision-making.
	PO3: Ethical Value
	Ability to incorporate quality, ethical and legal value-based perspectives to all organizational activities.
	PO4: Communication Skill
	Ability to develop communication, managerial and interpersonal skills.
	PO5: Individual and Team Leadership Skill
	Capability to lead themselves and the team to achieve organizational goals.
	PO6: Employability Skill
	Inculcate contemporary business practices to enhance employability skills in the competitive environment.
	PO7: Entrepreneurial Skill
	Equip with skills and competencies to become an entrepreneur.
	PO8: Contribution to Society

	Succeed in career endeavors and contribute significantly to society.
	Succeed in career endeavors and contribute significantly to society.
	DO 0 Multicultural compotence
	PO 9 Multicultural competence
	Possess knowledge of the values and beliefs of multiple cultures and
	a global perspective.
	PO 10: Moral and ethical awareness/reasoning
	Ability to embrace moral/ethical values in conducting one's life.
Programme	PSO1 – Placement
Specific Outcomes	To prepare the students who will demonstrate respectful engagement
(PSOs)	with others' ideas, behaviors, beliefs and apply diverse frames of
	reference to decisions and actions.
	PSO 2 - Entrepreneur
	To create effective entrepreneurs by enhancing their critical thinking,
	problem solving, decision making and leadership skill that will
	facilitate startups and high potential organizations.
	actitude statups and high potential organizations.
	DSQ2 Descende and Development
	PSO3 – Research and Development
	Design and implement HR systems and practices grounded in
	research that comply with employment laws, leading the organization
	towards growth and development.
	PSO4 – Contribution to Business World
	To produce employable, ethical and innovative professionals to
	sustain in the dynamic business world.
	PSO 5 – Contribution to the Society
	To contribute to the development of the society by collaborating with
	stakeholders for mutual benefit.

Semester-I	Cr edi t	Hou rs	Semester-II	Cred it	Hou rs	Semester-III	Credit	Hours	Semester–IV	Credi t	Hours
1.1. Core-I Organic	4	6	2.1. Core-V Organic	4	4	3.1. Core-IX Organic	5	6	4.1. Core-XIII Inorganic	4	6
1.2 Core-II Inorganic	4	6	2.2 Core-VI Physical	4	4	3.2 Core-X Inorganic	5	6	4.2 Core-XIV Physical	4	6
1.3 Core – III Organic chemistry practical-1	3	4	2.3 Core – VII Inorganic chemistry practical-2	3	4	3.3 Core – XI Analytical chemistry practical- 1	4	4	4.3 Core – XV Project with viva voce	9	10
1.4 Core –IV Inorganic chemistry practical-1	3	4	2.4 Core – VIII Physical chemistry practical-1	3	4	3.4 Core XII Organic chemistry practical-2	4	5	4.4 Elective VI(Industry/Entrepreneurship)20% theory80% practical	3	4
1.5 Discipline Centric Elective –I Green Chemistry or Pharmaceutical Chemistry	3	5	2.5 Discipline Centric Elective – III Molecular spectroscopy or Pharmacognosy and Phytochemistry	3	4	3.5 Discipline Centric Elective - V Electrochemistry, Photochemistry & Instrumentation or Chemistry of Natural Products	4	5	4.5 Skill Enhancement course / Professional Competency Skill VAC: Chemistry for Life	2	2
1.6 Generic Elective-II: Nanomaterials & Technology or Biomolecules	3	5	2.6 Generic Elective -IV: Bioinorganic and Medicinal Chemistry or	3	4	3.6 Internship/ Industrial Activity	2	2	4.6 Extension Activity - USSR	1	2

and Heterocyclic compounds			Material Science							
			2.7. Skill Enhancement – I (from group G) Cosmetic Chemistry	2	2	3.7 Skill Enhancement - II (from group G) Industrial Chemistry	2	2		
			2.8 Human Rights	2	2	-				
			2.9 MOOC	2	2					
	20	30		26	30		26	30	23	30
					Tot	al Credit Points -95				

Illustration-I

ElectiveCourses

Courses are grouped (GroupA to GroupF) so as to include topics from Pure Chemistry (PC), Applied Chemistry (AC) and Industrial Components(IC) like pharmaceutical industries, Polymer lab courses for flexibility of choice by the stake holders / institutions.

Semester I: Elective1 and Elective 2

Elective I to be chosen from Group A and Elective II to be chosen from GroupB

Group A: (PC/AC/IC)

- 1. Biomolecules and Heterocyclic compounds
- 2. Nanomaterials and Nanotechnology

Group B:(PC/AC/IC)

- 1. Pharmaceutical Chemistry
- 2. Green Chemistry

Semester II: Elective III & Elective IV

Elective III to be chosen from Group C and Elective IV to be chosen from Group D,

Group C:(PC/AC/IC)

- 1. Pharmacognosy and Phytochemistry
- 2. Molecular Spectrosopscopy

Group D: (PC/AC/IC)

- 1. Bioinorganic and MedicinalChemistry
- 2. Material Science

Semester III: Elective V

Elective V to be chosen from GroupE.

Group E:(PC/AC/IC)

1. Chemistry of Natural Products

2. Electrochemistry, Photochemistry and Instrumentation

Semester IV: Elective VI

ElectiveVIto be chosen fromGroupF.

Group F: (PC/AC/IC)

- 1. Green Chemistry
- 2. Industry / entrepreneurship : 20% theory, 80% practical

Skill Enhancement Courses

Skill Enhancement Courses are chosen to keep in pace with the latest developments in the academic / industrial front and provides flexibility of choice by the stakeholders /institutions.

Group G (Skill Enhancement Courses) SEC:(Practical based paper)

- Computational Chemistry
- ➢ 3D printing in Chemistry
- Preparation of Consumer products
- Chemistry in everyday life
- Cosmetic Chemistry
- Origin lab
- Industrial Chemistry
- Research Tools and Techniques

Ability Enhancement Courses

SoftSkillcourses

Extra-Disciplinary Courses for other Departments (not for Mathematics students)

Students from other Departments may also choose any one of the following as

Extra Disciplinary Course.

ED-I: Chemistry for Life

Sciences

ED-II:Chemical

conservation

ED-III: Chemistry in food

preservation

ED-IV: Chemistry for Social studies

ED-V: Chemistry in consumer products

2. Instructions for Course Transaction

Courses	Lecture	Tutorial	LabPractice	Total
	Hrs	hrs		hrs
Core	75	15		90
Electives	75	15		90
ED	75	15		90
LabPracticeCourses	-	15	75	90
Project	20		70	90

3. Testing

Pattern

(25+75)

13.1 Internal Assessment

Theory Course: For theory courses there shall be three tests conducted by the faculty concerned and the average of the best two can be taken as the Continuous Internal Assessment (CIA) for a maximum of 25marks. The duration of each test shall be one/one and a half hour.

Computer Laboratory Courses: For Computer Laboratory Oriented Courses, there shall be two tests in Theory part and two tests in Laboratory part. Choose one best from Theory part and other best from the two Laboratory part. The average of the best two can be treated as the CIA for a maximum of 25 marks. The duration of each test shall be one/one and a half hour. There is no improvement for CIA of both theory and laboratory, and, also for University End Semester Examination.

14. Different Types of Courses

(i) Core Courses (Illustrative)

- 1. Organic Reaction mechanism I & II
- 2. Structure and bonding in Inorganic compounds
- 3. Organic Chemistry Practical
- 4. Physical Chemistry-I & II
- 5. Inorganic Chemistry Practical
- 6. Organic synthesis and Photochemistry
- 7. Coordination Chemistry-I & II
- 8. Physical Chemistry Practical
- 9. Analytical Instrumentation technique practical

(ii) Elective Courses (ED within the Department Experts) (Illustrative)

- 1. Pharmaceutical Chemistry
- 2. Nanomaterials and Nanotechnology
- 3. Electrochemistry
- 4. Molecular Spectroscopy
- 5. Medicinal Chemistry
- 6. Green Chemistry
- 7. Pharmacognosy and Phytochemistry
- 8. Biomolecules and Heterocyclic compounds
- 9. Bio inorganic Chemistry
- 10. Material Science
- 11. Chemistry of Natural products
- 12. Polymer chemistry

(iii) Elective Courses (ED from other Department Experts)

(iv) Skill Development Courses

(v) Institution-Industry-Interaction (Industry aligned Courses)

Programmes /course work/field study/Modelling the Industry

Problem/Statistical Analysis/Commerce-Industry related problems/MoU with Industry and the like activities.

TANSCHE REGULATIONS ON LEARNING OUTCOMES-BASED CURRICULUM FRAMEWORK FOR UNDERGRADUATE EDUCATION

Programme M.Sc. Programme Code Image: Code	
Duration 2 years for PG	
Programme PO1: Problem Solving Skill	
Outcomes (Pos) Apply knowledge of Management theorie practices to solve business problems thro context.	
PO2: Decision Making Skill Foster analytical and critical thinking decision-making.	abilities for data-based
PO3: Ethical Value Ability to incorporate quality, ethical perspectives to all organizational activities.	and legal value-based
PO4: Communication Skill Ability to develop communication, manageria	al and interpersonal skills.
PO5: Individual and Team Leadership Ski Capability to lead themselves and the team goals.	
PO6: Employability Skill Inculcate contemporary business practices skills in the competitive environment.	to enhance employability
PO7: Entrepreneurial Skill Equip with skills and competencies to becom	ne an entrepreneur.
PO8: Contribution to Society Succeed in career endeavors and contribute	significantly to society.
PO 9 Multicultural competence Possess knowledge of the values and belief a global perspective.	s of multiple cultures and
PO 10: Moral and ethical awareness/reason Ability to embrace moral/ethical values in cor	8
Programme Specific Outcomes (PSOs)PSO1 – Placement To prepare the students who will demonstrat with others' ideas, behaviors, beliefs and app reference to decisions and actions.	1 00

PSO 2 - Entrepreneur To create effective entrepreneurs by enhancing their critical thinking, problem solving, decision making and leadership skill that will facilitate startups and high potential organizations.
PSO3 – Research and Development Design and implement HR systems and practices grounded in research that comply with employment laws, leading the organization towards growth and development.
PSO4 – Contribution to Business World To produce employable, ethical and innovative professionals to sustain in the dynamic business world.
PSO 5 – Contribution to the Society To contribute to the development of the society by collaborating with stakeholders for mutual benefit.

Semester 1

<mark>1.1</mark>								
Title of the	ORGANIC	C REACTION	N ME	CHANISM	- I			
Course								
Paper No.	Core I	I		1	1	1	1	
Category	Core	Year	Ι	Credits	5	Course		
		Semester	Ι			Code		
Instructional	Lecture	Tutorial	Lal	o Practice		Total		
hours per	5	1	-			6		
week								
Prerequisites		epts of organic						
Objectives of		and the feasi	bility	and the me	echar	nism of various	organic	
the course	reactions.							
	-		chniq	ues in the	det	ermination of	reaction	
	mechanism	s.						
			cept o	of stereoche	emist	ry involved in	organic	
	compounds							
		11			invo	lved in the vario	us types	
		reaction mecha						
			nthetic	e routes fo	r th	e preparation o	of organic	
	compounds							
Course						eaction Mecha		
Outline	Aromaticity: Reaction intermediates, The transition state, Reaction coordinate diagrams, Thermodynamic and kinetic requirements of reactions: Hammond postulate. Methods of determining mechanism: non-kinetic methods - product analysis, determination of intermediates-isolation, detection, and trapping. Hammett and Taft equations. Aromaticity: Hückel's 4n + 2 Rule, Aromaticity in benzenoid, non-benzenoid, heterocyclic compounds and annulenes. Cyclopropenyl, Cyclobutadiene and cyclooctatetraene. systems. Fulvenes and Related Systems. Ions-Cations, Anions- Cross-conjugated Polycyclic Systems:							
	UNIT-II:A	romatic and	Alip	hatic Electi	ophi	lic Substitution	: Aromatic	
	electrophili					reactivity of		
	polysubstit	uted phenol, n	itrobe	nzene and h	alobe	enzene. Reaction	is involving	
						and diazonium		
	Sulphur ele	ctrophiles: sul	phona	tion; Halog	en ele	ectrophiles: chlor	rination and	
						fts alkylation, ac		
					subs	stitution Mechan	nisms: SE2	
		E1- Mechanisn						
	UNIT-III:	Aromatic and	d Alij	phatic Nucl	eoph	ilic Substitution	: Aromatic	
						$_{\rm N}$ Ar, $S_{\rm N}1$ and		
	-					of Substrate, leav	-	
				•		and Sulphur-nu	001	
		reaction, vo		-	-	-	-	
	Bucherer		n Ki	ichter, Son	nmel	et- Hauser an	d Smiles	

Extended Professional Component (is a part of internal component only, Not to be included in the external examination	Syimechanisms and evidences. Factors affecting Aliphatic Nucleophilic Substitution, Aliphatic nucleophilic substitutions at an allylic carbon, vinyl carbon, bridgehead and trigonal carbons, Non-classical carbocation, Ambident nucleophiles, Neighbouring Group Participation. UNIT-IV:Stereochemistry-I: Introduction to molecular symmetry and chirality – axis, plane, center, alternating axis of symmetry. Optical isomerism due to asymmetric and dissymmetric molecules with C, N, S based chiral centers. Optical purity, prochirality, enantiotopic and diastereotopic atoms, groups, faces, axial and planar chirality, chirality due to helical shape, methods of determining theconfiguration. Racemic modifications: Racemization by thermal, anion, cation, reversible formation, epimerization, mutarotation.D, L system, Cram's and Prelog's rules: R, S-notations, proR, proS, side phase and re phase Cahn-Ingold- Prelog rules, absolute and relative configurations. Configurations of allenes, spiranes, biphenyls, cyclooctene, helicene, binaphthyls, ansa and cyclophanic compounds, exo-cyclic alkylidene-cycloalkanes. Topicityandprostereoisomerism, chiral shift reagents and chiral solvating reagents.Criteria for optical purity: Resolution of racemic modifications, asymmetric transformations, asymmetric synthesis, destruction. Stereoselective and stereospecific synthesis. UNIT-V:Stereochemistry-II: Conformation and reactivity of acyclic systems, cyclohexane, cyclohexanoe, intramolecular rearrangements, neighbouring group participation, chemical consequence of conformation and reactivity in cyclohexane systems. Fused and bridged rings: bicyclic: decalins and Brett's rule.Optical rotation and optical rotatory dispersion, conformational asymmetry, ORD curves, octant rule, configuration and conformation, Cotton effect, axial haloketone rule. Questions related to the above topics, from various competitive examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others to be solved (To be discussed during the Tutorial hours)
question paper) Skills acquired	Knowledge, Problem solving, Analytical ability, Professional Competency,
from this course	Professional Communication and Transferable skills.
Recommended Text	 J. March and M. Smith, Advanced Organic Chemistry, 5th edition, John-Wiley and Sons.2001. E. S. Gould, Mechanism and Structure in Organic Chemistry, Holt,

	Rinehart and Winston Inc., 1959.
	3. P.S.Kalsi, Stereochemistry of carbon compounds, 8 th edition, New
	Age International Publishers, 2015.
	4. P. Y. Bruice, Organic Chemistry, 7 th edn, Prentice Hall, 2013.
	5. J.Clayden, N. Greeves, S. Warren, Organic Compounds, 2 nd edition,
	Oxford University Press, 2014.
Reference	1. F.A. Carey and R.J. Sundberg, Advanced Organic Chemistry Part-A
Books	and B, 5 th edition, Kluwer Academic / Plenum Publishers, 2007.
	2. D. G. Morris, Stereochemistry, RSC Tutorial Chemistry Text 1, 2001.
	3. N.S. Isaacs, Physical Organic Chemistry, ELBS, Longman, UK, 1987.
	4. E. L. Eliel, Stereochemistry of Carbon Compounds, Tata-McGraw
	Hill, 2000.
	5. I. L. Finar, Organic chemistry, Vol-1&2, 6 th edition, Pearson
	Education Asia, 2004.
Website and	1.https://sites.google.com/site/chemistryebookscollection02/home/organic-
e-learning	<u>chemistry/organic</u>
source	2. <u>https://www.organic-chemistry.org/</u>
Course Learnin	g Outcomes (for Mapping with POs and PSOs)
Students will be	able
CLO1: To recall	the basic principles of organic chemistry.
CLO2: To un	derstand the formation and detection of reaction intermediates of
organicreactions	
CLO3: To pred	lict the reaction mechanism of organic reactions and stereochemistry of
organic compour	
0 1	ly the principles of kinetic and non-kinetic methods to determine the
mechanism of re	
CLO5:To desig	gn and synthesize new organic compounds by correlating the
	of organic compounds.
5	

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	М
CO 2	М	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	М	S	S
CO 4	M	S	S	S	S	M	S	S	S	S
CO 5	М	S	М	S	S	М	S	М	S	S
Strong	- 3	1	1		Me	edium-2	<u> </u>	<u> </u>]]	Low-1

CO-PO Mapping (Course Articulation Matrix)

g

Level of Correlation between PSO's and CO's

СО /РО	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
C05	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

3 – Strong, 2 – Medium, 1 - Low

	Methods of Evaluation							
	Continuous Internal Assessment Test							
Internal	Assignments	25 Marks						
Evaluation	Seminars							
	Attendance and Class Participation							
External	End Semester Examination	75 Marks						
Evaluation	End Semester Examination	75 Walks						
	Total	100 Marks						
	Methods of Assessment							
Recall (K1)	Simple definitions, MCQ, Recall steps, Co	Simple definitions, MCQ, Recall steps, Concept definitions.						
Understand/	MCQ, True/False, Short essays, Concept explanations, short summary or overview.							
Comprehend								
(K2)								
Application	Suggest idea/concept with examples, sug	gest formulae, solve problems,						
(K3)	Observe, Explain.							
Analyze (K4)	Problem-solving questions, finish a procedure in many steps,							
	Differentiate between various ideas, Map	knowledge.						
Evaluate	Longer essay/ Evaluation essay, Critique	or justify with pros and cons						
(K5)								
Create (K6)	Check knowledge in specific or offbeat s	ituations, Discussion, Debating						
	or Presentations.							

In order to avoid pull the score down of each PO, it is suggested that the usage L-Low (1) to the minimum.

The S, M, L is based on the course outcome. The mapping is based on the revised Bloom's Taxonomy Verbs used to describe your course outcome.

- Remember and Understanding Lower level
- Apply and Analyze Medium Level
- Evaluate and Create Strong Level

<mark>1.2</mark>							
Title of the	STRUCT	FURE AND	BO	NDING II	N INO	ORGANIC CO	OMPOUNDS
Course							
Paper No.	Core II			-			
Category	Core	Year	Ι	Credits	5	Course	
		Semester	Ι			Code	
Instructional	Lecture	Tutorial	Lał	o Practice		Total	
hours per week	5	1	-			6	
Prerequisites		cepts of In					
Objectives of the		nine the str	uctur	al propert	ies o	f main group	compounds and
course	clusters.						
	To gain	fundamenta	l kn	owledge o	on th	e structural a	spects of ionic
	crystals.						
	To famili	arize various	s diff	raction an	d mic	roscopic techn	iques.
						ne defects in io	nic crystals.
		te the struct		+			
Course Outline				0	-	-	d clusters: VB
	theory –	Effect of lor	ne pa	ir and elec	trone	gativity of ato	ms (Bent's rule)
	on the ge	eometry of t	the m	nolecules;	Struc	ture of silicate	es - applications
	of Pauli	ngs rule of	eleo	ctrovalenc	e - i	isomorphous 1	replacements in
	silicates	– ortho, m	neta	and pyro	silic	ates – one di	mensional, two
	dimensio	nal and th	ree-d	imensiona	l sili	cates. Structur	re of silicones,
	Structura	l and bondi	ng fe	atures of H	3-N, S	S-N and P-N c	ompounds; Poly
			-				ster: Structural
		• -	-				nes, hetero and
		-	-			-	f borane cluster;
		up clusters -		-			
		1					cking of ions in
				•		•	n crystal lattice,
	-	-			-	-	netry operations
							oup and space
						· 1 U	ande equation -
	Kapustins	ski equation	, Mao	delung cor	istant		-
				•			res of the crystal
	•	-					and anti-fluorite,
							Spinels -normal
		• •	-			•	Frowth methods:
			tion	(hydrother	mal,	sol-gel metho	ds) – principles
	and exam	•	os in	solid of	ate	homistry. V	row diffraction
		-				•	-ray diffraction - Principle and
	-						DS files, Phase
							on; Systematic
							ue – principle,

Extended Professional Component (is a part of internal component only, Not to be included in the external examination question paper)	instrumentation and application. Electron microscopy – difference between optical and electron microscopy, theory, principle, instrumentation, sampling methods and applications of SEM and TEM. UNIT-V:Band theory and defects in solids Band theory – features and its application of conductors, insulators and semiconductors, Intrinsic and extrinsic semiconductors; Defects in crystals – point defects (Schottky, Frenkel, metal excess and metal deficient) and their effect on the electrical and optical property, laser and phosphors; Linear defects and its effects due to dislocations. Questions related to the above topics, from various competitive examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others to be solved (To be discussed during the Tutorial hours)
Skills acquired from this course Recommended Text	 Knowledge, Problem solving, Analytical ability, Professional Competency, Professional Communication and Transferable skills. 1. A R West, Solid state Chemistry and its applications, 2ndEdition (Students Edition), John Wiley & Sons Ltd., 2014. 2. A K Bhagi and G R Chatwal, A textbook of inorganic polymers, Himalaya Publishing House, 2001. 3. L Smart, E Moore, Solid State Chemistry – An Introduction, 4th Edition, CRC Press, 2012. 4. K. F. Purcell and J. C. Kotz, Inorganic Chemistry; W.B. Saunders company: Philadelphia, 1977. 5. J. E. Huheey, E. A. Keiter and R. L. Keiter, Inorganic Chemistry; 4th ad a Harman and Payre Narry York, 1982.
Reference Books	 4th ed.; Harper and Row: NewYork, 1983. D. E. Douglas, D.H. McDaniel and J. J. Alexander, Concepts and Models in Inorganic Chemistry, 3rd Ed, 1994. R J D Tilley, Understanding Solids - The Science of Materials, 2nd edition, Wiley Publication, 2013. C N R Rao and J Gopalakrishnan, New Directions in Solid State Chemistry, 2nd Edition, Cambridge University Press, 199. T. Moeller, Inorganic Chemistry, A Modern Introduction; John Wiley: New York, 1982. D. F. Shriver, P. W. Atkins and C.H. Langford; Inorganic Chemistry; 3rd ed.; Oxford University Press: London, 2001.
Website and e-learning source Course Learning (https://ocw.mit.edu/courses/3-091-introduction-to-solid-state-chemistry- fall-2018/video_galleries/lecture-videos/ Dutcomes (for Mapping with POs and PSOs)

Students will be able

CO1: Predict the geometry of main group compounds and clusters.

CO2: Explain about the packing of ions in crystals and apply the radius ratio rule to predict the coordination number of cations.

CO3: Understand the various types of ionic crystal systems and analyze their structural features.

CO4: Explain the crystal growth methods.

CO5: To understand the principles of diffraction techniques and microscopic techniques.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	М
CO 2	М	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	М	S	S
CO 4	М	S	S	S	S	M	S	S	S	S
CO 5	Μ	S	Μ	S	S	Μ	S	Μ	S	S

CO-PO Mapping (Course Articulation Matrix)

3 – Strong, 2 – Medium, 1 - Low

Level of Correlation between PSO's and CO's

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

3 – Strong, 2 – Medium, 1 - Low

<mark>1.3</mark>									
Title of the	ORGAN	IC CHEMI	STR	Y PRAC	ΓICA	L			
Course									
Paper No.	Core III	Core III							
Category	Core	Year	Ι	Credits	4	Course			
		Semester	Ι			Code			
Instructional	Lecture	Tutorial		Practice		Total			
hours per week	-	1	3			4			
Prerequisites		ncepts of or							
Objectives of the				-	parat	tion, qualitativ	ve analysis and		
course	preparatio	on of organi	ccom	pounds.					
	To develo	op analytica	ıl ski	ll in the	hand	ling of chemi	ical reagents for		
	separation	n of binary a	and te	rnaryorga	nic n	nixtures.			
	To analy	ze the sep	oarate	d organi	c co	mponents sys	stematically and		
	derivatize	e them suital	oly.						
			e exp	erimental	setu	p for the orga	anic preparations		
		two stages.							
	-			purification	on a	nd drying tec	chniques for the		
	-	d processing							
Course Outline		Separation		analysis:					
	I wo com	ponent mixt	ures.						
	UNIT-II:								
		•							
	Three cor	nponent miz	tures	2					
		I: Single sta			ns:				
		0	-	-		om hydroquino	one		
		Nitrobenzoi							
		reparation of		-					
	· · · · ·	enzhydrol fr		•					
		reparation of							
	/ /					n cyclohexand	one		
	U/	reparation of		•					
	h) 2,	3 - Dimethy	lindo	le from pl	nenyl	hydrazine and	12 - butanone		
		1 4 1 4 4	1 1		<u> </u>	•			
Extended Professional						m various com	TNPSC others		
	to be solv		IKE	\mathbf{S} / NEI/ U	GC-	CSIR / GATE	/INPSC others		
Component (is a part of internal		scussed duri	ng th	e Tutorial	how	·c)			
component only,		scusseu uull	ng til		noul	3)			
Not to be included									
in the external									
examination									

question paper)						
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional					
from this course	Competency, Professional Communication and Transferable skills.					
Recommended	1. A R West, Solid state Chemistry and its applications, 2ndEdition					
Text	(Students Edition), John Wiley & Sons Ltd., 2014.					
	2. A K Bhagi and G R Chatwal, A textbook of inorganic polymers,					
	Himalaya Publishing House, 2001.					
	3. L Smart, E Moore, Solid State Chemistry – An Introduction, 4 th					
	Edition, CRC Press, 2012.					
Reference Books	1. D. E. Douglas, D.H. McDaniel and J. J. Alexander, Concepts and					
	Models in Inorganic Chemistry, 3rd Ed, 1994.					
	2. R J D Tilley, Understanding Solids - The Science of Materials, 2 nd					
	edition, Wiley Publication, 2013.					
	3. C N R Rao and J Gopalakrishnan, New Directions in Solid State					
	Chemistry, 2 nd Edition, Cambridge University Press, 199.					
Website and	https://ocw.mit.edu/courses/3-091-introduction-to-solid-state-					
e-learning source	chemistry-fall-2018/video galleries/lecture-videos/					
Course Learning C	Dutcomes (for Mapping with POs and PSOs)					

Students will be able:

CO1: To recall the basic principles of organic separation, qualitative analysis and preparation.

CO2: To explain the method of separation and analysis of separated organic mixtures and convert them as derivatives by suitable preparation method.

CO3: To determine the characteristics of separation of organic compounds by variouschemical reactions.

CO4: To develop strategies to separate, analyze and prepare organic compounds.

CO5:To formulate a method of separation, analysis of organic mixtures and design suitableprocedure for organic preparations.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	Μ
CO 2	M	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	Μ	S	S
CO 4	М	S	S	S	S	M	S	S	S	S
CO 5	М	S	М	S	S	M	S	М	S	S

CO-PO Mapping (Course Articulation Matrix)

3 – Strong, 2 – Medium, 1 - Low

Level of Correlation between PSO's and CO's

СО /РО	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

3 – Strong, 2 – Medium, 1 - Low

<mark>1.4</mark>								
Title of the	INORGANIC CHEMISTRY PRACTICAL							
Course								
Paper No.	Core IV							
Category	Core	Year	Ι	Credits	4	Course		
		Semester	Ι			Code		
Instructional	Lecture	Tutorial	Lab Practice			Total		
hours per week	-	1	3 4					
Prerequisites	Basic pri	nciples of g	gravi	metric and	d qu	alitative analy	rsis	
Objectives of the	To under	stand and en	nhan	ce the visu	ial o	bservation as a	in analytical tool	
course		antitative es						
	To recall	To recall the principle and theory in preparing standard solutions.						
	To train the students for improving their skill in estimating the amount							
	of ion accurately present in the solution							
	To estimate	To estimate metal ions, present in the given solution accurately without						
	using inst		1				-	

	To determine the amount of ions, present in a binary mixture accurately.
Course Outline	UNIT-I: Analysis of mixture of cations: Analysis of a mixture of four
	cations containing two common cations and two rare cations.Cations to
	be tested.
	Group-I : W, Tl and Pb.
	Group-II : Se, Te, Mo, Cu, Bi and Cd.
	Group-III : Tl, Ce, Th, Zr, V, Cr, Fe, Ti and U.
	Group-IV : Zn, Ni, Co and Mn.
	Group-V : Ca, Ba and Sr.
	Group-VI : Li and Mg.
	UNIT-II: Preparation of metal complexes: Preparation of inorganic
	complexes:
	a)Preparation of tristhioureacopper(I)sulphate
	b)Preparation of potassium trioxalate chromate(III)
	c)Preparation of tetramminecopper(II) sulphate
	d)Preparation of Reineck's salt
	UNIT-III: Complexometric Titration:
	a) Estimation of zinc, nickel, magnesium, and calcium.
	b) Estimation of mixture of metal ions-pH control, masking and
	demasking agents.
	demasking agents.
Extended	Questions related to the above topics, from various competitive
Professional	examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others
Component (is a	to be solved
part of internal	(To be discussed during the Tutorial hours)
component only,	
Not to be included	
in the external	
examination	
question paper)	
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional
from this course	Competency, Professional Communication and Transferable skills.
	1. A. JeyaRajendran, Microanalytical Techniques in Chemistry:
Recommended	
Text	Inorganic Qualitative Analysis, United global publishers, 2021.
	2. V. V. Ramanujam, Inorganic Semimicro Qualitative Analysis;
	3rded.,The National Publishing Company, Chennai, 1974.
	3. Vogel's Text book of Inorganic Qualitative Analysis, 4thed., ELBS,
	London.
Reference Books	1. G. Pass, and H. Sutcliffe, <i>Practical Inorganic Chemistry</i> ; Chapman
	Hall, 1965.
	2. W. G. Palmer, Experimental Inorganic Chemistry; Cambridge
	University Press, 1954.

Course Learning Outcomes (for Mapping with POs and PSOs)
Students will be able:
CO1 : To identify the anions and cations present in a mixture of salts.
CO2 : To apply the principles of semi micro qualitative analysis to categorize acid radicals and basic radicals.
CO3 : To acquire the qualitative analytical skills by selecting suitable confirmatory tests and spot tests.
CO4 : To choose the appropriate chemical reagents for the detection of anions and cations.
CO5:To synthesize coordination compounds in good quality.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	М
CO 2	М	S	S	S	S	M	S	S	S	S
CO 3	S	S	М	S	S	S	S	Μ	S	S
CO 4	М	S	S	S	S	M	S	S	S	S
CO 5	М	S	М	S	S	Μ	S	М	S	S

CO-PO Mapping (Course Articulation Matrix)

3 – Strong, 2 – Medium, 1 - Low

٦

Г

31	
----	--

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
C05	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Level of Correlation between PSO's and CO's

3 – Strong, 2 – Medium, 1 – Low

<mark>1.5</mark>							
Title of the	GREEN	CHEMIST	RY				
Course							
Paper No.	Elective	[
Category	Elective	Year	Ι	Credits	3	Course	
		Semester	Ι			Code	
Instructional	Lecture	Tutorial	Lal	b Practice		Total	
hours per week	4	1	-			5	
Prerequisites	Basic kn	owledge of	gene	ral chemis	stry		
Objectives of the			he	principl		of greer	
course	1 1	•					and conversion.
	-	•	ions	for indus	trial	production of	Petroleum and
	Petrocher						
	-	solutions fo	r pol	lution pre	venti	on in Industria	al chemical and
	fuel						
	1				-	ping industries	
					ustria	al production	of Surfactants,
	Organic a	nd inorgani	c che	emicals.			
Course Outline						•	Green Chemistry.
				•			terminologies,
	Internationall green chemistry organizations and Twelve principles of						
	Green Chemistry with examples.						
	UNIT-II: Choice of starting materials, reagents, catalysts and solvents						
	in detail,	Green chem	nistry	in day to	day l	ife. Designing	green synthesis-
			-	•	•		: Water, Ionic
							ect on organic
	-	-			-	-	-
	reaction.S	Supercritical	c	arbon d	ioxid	e- properties	, advantages,

	drawbacks and a few examples of organic reactions in scCO ₂ . Green
	synthesis-adipic acid and catechol.
	UNIT-III: Environmental pollution, Green Catalysis-Acid catalysts, Oxidation catalysts, Basic catalysts, Polymer supported catalysts-Poly styrene aluminum chloride, polymeric super acid catalysts, Poly supported photosensitizers.
	UNIT-IV: Phase transfer catalysis in green synthesis-oxidation using hydrogen peroxide, crown ethers-esterification, saponification, anhydride formation, Elimination reaction, Displacement reaction. Applications in organic synthesis.
	UNIT-V: Micro wave induced green synthesis-Introduction, Instrumentation, Principle and applications. Sonochemistry – Instrumentation, Cavitation theory - Ultra sound assisted green synthesis and Applications.
Professional	Questions related to the above topics, from various competitive examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others
1 (to be solved (To be discussed during the Tutorial hours)
component only,	(10 be discussed during the Tutorial nouis)
Not to be included	
in the external	
examination	
question paper)	
	Knowledge, Problem solving, Analytical ability, Professional
from this course	Competency, Professional Communication and Transferable skills.
Recommended Text	1. Ahluwalia, V.K. and Kidwai, M.R. New Trends in Green Chemistry, Anamalaya Publishers, 2005.
	 W. L. McCabe, J.C. Smith and P. Harriott, Unit Operations of
	Chemical Engineering, 7 th edition, McGraw-Hill,
	NewDelhi,2005.
	3. J. M. Swan and D. St. C. Black, Organometallics in Organic
	Synthesis, Chapman Hall,1974.
	4. V. K. Ahluwalia and R. Aggarwal, Organic Synthesis: Special
	Techniques, Narosa Publishing House, New Delhi,2001.
	5. A. K. De, Environmental Chemistry, New Age Publications, 2017.
Reference Books	1. Anastas, P.T. and Warner, J.K. Oxford Green Chemistry -Theory and
	Practical, University Press, 1998
	2. Matlack, A.S. Introduction to Green Chemistry, Marcel Dekker, 2001
	 Cann, M.C. and Connely, M.E. Real-World Cases in Green Chemistry, American Chemical Society, Washington, 2000
	4. Ryan, M.A. and Tinnesand, M., Introduction to Green Chemistry,
	American Chemical Society Washington, 2002.
	•

e-learning source	3. <u>https://www.studyorgo.com/summary.php</u>
Course Learning C	Dutcomes (for Mapping with POs and PSOs)

Students will be able:

CO1: To recall the basic chemical techniques used in conventional industrial preparations and in green innovations.

CO2: To understand the various techniques used in chemical industries and in laboratory.

CO3: To compare the advantages of organic reactions assisted by renewable energy sources and non-renewable energy sources.

CO4: To apply the principles of PTC, ionic liquid, microwave and ultrasonic assisted organicsynthesis.

CO5: To design and synthesize new organic compounds by green methods.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	М
CO 2	М	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	Μ	S	S
CO 4	M	S	S	S	S	M	S	S	S	S
CO 5	Μ	S	Μ	S	S	Μ	S	M	S	S

CO-PO Mapping (Course Articulation Matrix)

3 – Strong, 2 – Medium, 1 - Low

Level of Correlation between PSO's and CO's

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

3 – Strong, 2 – Medium, 1 – Low

1		6
1	•	O

<u>1.6</u>	I									
Title of the	NANO M	IATERIAL	S Al	ND NANC) TE	CHNOLOGY				
Course										
Paper No.	Elective II									
Category	Elective	Year	Ι	Credits	3	Course				
	Semester I			Code						
Instructional	Lecture	Tutorial	Lal	o Practice		Total				
hours per week	4	1	-			5				
Prerequisites	Basic kno	owledge of	cryst	allograph	y an	d material scie	ence			
Objectives of the	To unders	stand the con	ncept	t of nano n	nater	ials and nano te	chnology.			
course	To unders	stand the var	rious	types of n	ano i	materials and th	eir properties.			
	To unde	rstand the	app	olications	of	synthetically i	important nano			
	materials.		11			5	1			
	To correla	ate the chara	acteri	istics of va	rious	s nano materials	s synthesized by			
	new techr	nologies.								
						ly used new na	no materials.			
Course Outline	UNIT-I:I	introduction	0	f nanom	ateri	als and na	notechnologies,			
	Introducti	ion-role of	size,	classifica	ation	-0D, 1D, 2D,	3D. Synthesis-			
	Bottom -	Up, Top–D	own	, consolida	ation	of Nano powe	ders.Features of			
	nanostruc	tures, Back	grou	nd of nand	ostru	ctures.Techniqu	ues of synthesis			
			-			anoscience. A	=			
		rials and tec					11			
				-	` the	nanomaterials	, Predicting the			
		f Bonding					ructure.Metallic			
	• •	Ũ				ls, Nanopartic				
	-	-				· •				
	-	-	-				ds - inert gas			
				-		-	olvothermal and			
							anced, and low-			
	_					lectrochemical	-			
							ies relevant to			
				-		•	al properties of			
						on, thermal	1 1			
							ides: silica, iron			
		lalumina - sy					1			
		Electrical	-	1		•				
							netic properties,			
							of magnetic			
							Ge, Si, GaAs,			
							s p and n –type			
	interpreta			-	m an ier	d anomalous, density. Ap	-			
	Interpreta	01 01	Cinal	ige carr		density. Ap	plications of			

Extended Professional Component (is a part of internal component only, Not to be included in the external examination question paper)	semiconductors: p-n junction as transistors and rectifiers, photovoltaic and photogalvanic cell. UNIT-V:Nano thin films, nanocomposites. Application of nanoparticles in different fields. Core-shellnanoparticles- types,synthesis,andproperties.Nanocomposites-metal-,ceramic- andpolymer-matrixcomposites-applications. Characterization–SEM, TEM and AFM- principle,instrumentationand applications. Questions related to the above topics, from various competitive examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others to be solved (To be discussed during the Tutorial hours)
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional
from this course	Competency, Professional Communication and Transferable skills.
Recommended Text Reference Books	 S.Mohan and V. Arjunan, Principles of Materials Science, MJP Publishers, 2016. Arumugam, Materials Science, Anuradha Publications,2007. Giacavazzo et. al., Fundamentals of Crystallography, International Union of Crystallography. Oxford Science Publications, 2010 Woolfson, An Introduction to Crystallography, Cambridge University Press, 2012. James F. Shackelford and Madanapalli K. Muralidhara, Introduction to Materials Science for Engineers. 6th ed., PEARSON Press, 2007. S.Mohan and V. Arjunan, Principles of Materials Science, MJP Publishers, 2016. Arumugam, Materials Science, Anuradha Publications,2007. Giacavazzo et. al., Fundamentals of Crystallography, International Union of Crystallography. Oxford Science Publications,2007. Giacavazzo et. al., Fundamentals of Crystallography, International Union of Crystallography. Oxford Science Publications, 2010 Woolfson, An Introduction to Crystallography, Cambridge University Press, 2012. James F. Shackelford and Madanapalli K. Muralidhara, Introduction to Materials Science for Engineers. 6th ed., PEARSON Press, 2007.
Website and	1. <u>http://xrayweb.chem.ou.edu/notes/symmetry.html</u> .
0	2. <u>http://www.uptti.ac.in/classroom-content/data/unit%20cell.pdf</u> . Dutcomes (for Mapping with POs and PSOs)
Students will be abl	e: ethods of fabricating nanostructures.
-	unique properties of nanomaterials to reduce dimensionality of the

material.

CO3: To describe tools for properties of nanostructures.

CO4: To discuss applications of nanomaterials.

CO5:To understand the health and safety related to nanomaterial.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	М
CO 2	М	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	М	S	S
CO 4	M	S	S	S	S	M	S	S	S	S
CO 5	Μ	S	М	S	S	Μ	S	Μ	S	S

CO-PO Mapping (Course Articulation Matrix)

3 – Strong, 2 – Medium, 1 - Low

Level of Correlation between PSO's and CO's

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

3 – Strong, 2 – Medium, 1 - Low

Semester 2

2.1		50	nester	2				
Title of the								
Course	ORGANIC REACTION MECHANISM-II							
Paper No.	CoreV							
Category	Core	Year	Ι	Credits	4	Course		
Category		Semester	II	cicuits	'	Code		
Instructional	Lecture	Tutorial		Practice		Total		
hours per	5	1	-	Tractice		6		
week		1						
Prerequisites	Basic knowl	edge of organic	chen	nistrv				
Objectives of		nd the concept			n bei	nzenoid, non-	-benzenoid,	
the course		and annulene co				,	,	
		d the mechanis			ous t	ypes of organ	ic reactions	
	with evidence				•			
	To understan	d the application	ns of s	synthetically	impoı	tant reagents.		
		the reactivity be		-		1		
	To design sy	nthetic routes for	or synt	hetically used	d orga	nic reactions.		
Course	UNIT-I: Eli	mination and	Free	Radical Rea	ction	s: Mechanisn	ns: E2, E1,	
Outline	and E1cB me	echanisms. Syn-	and	anti-eliminati	ons.	Orientation of	the double	
	bond: Hoffm	ann and Saytze	ff rule	s. Reactivity	: Effe	ct of substrat	e, attacking	
	bases, leavin	g group and me	dium.	Stereochem	istry o	of elimination	s in acyclic	
	and cyclic systems, pyrolytic elimination.Production of radicals by thermal and photochemical reactions, Detection and stability of radicals,							
	-	s of free radica				-		
						-	-	
	polymerization			alogenations,			ibstitutions,	
	-	nts. Reactivity:		-	-	ic, aromatic	substrates,	
		the attacking rac						
	UNIT-II: Oxidation and Reduction Reactions: Mechanisms: Direct							
		sfer, hydride tra						
		oxidative and		_	-			
		eactions: Dehy	<u> </u>	•				
	-	mercuric aceta			-	-	-	
		ium tetroxide, c			•			
		ides and amine			0	0		
	U U	double bonds	-				-	
		chromium tri					•	
		ern oxidation)		•		•	-	
		carbodiimide (l er, Clemmenso		/				
		hydrides. Hom					-	
	Blanc reduct	•	ogene	ous nyuroge	natioi		Douveault-	
		Rearrangement	s. Re	arrangemente	toe	lectron defici	ent carbon.	
	r macoi-pina	colone and ser	m-biu	accione rear	range	ments -applie	Lations and	

	stereochemistry, Wagner-Meerwein, Dienone-phenol, Baker-Venkataraman and Wolff rearrangements.Rearrangements to electron deficient nitrogen: Hofmann, Curtius, Schmidt, Beckmann rearrangements. Rearrangements to electron deficient oxygen: Baeyer-Villiger oxidation.Rearrangements to electron rich atom: Favorskii, Stevens, [1,2]-Wittig and [2,3]-Wittig rearrangements. UNIT-IV: Addition to Carbon Multiple Bonds: Mechanisms: (a) Addition to carbon-carbon multiple bonds- Addition reactions involving electrophiles, nucleophiles, halogens, free radicals, carbenes and cyclic mechanisms- Orientation and reactivity, Oxymercuration-Reduction Hydroboration- Oxidation, Addition to conjugated diene, Michael reaction (b) Addition to carbon-hetero atom multiple bonds: Mannich reaction, Addition of Grignard reagents to aldehydes, ketones, acids, esters and nitrites. Wittig reaction, Prins reaction. Stereochemical aspects of addition reactions. organozinc and organolithium reagents to carbonyl and unsaturated carbonyl compounds. Mechanism of condensation reaction, Benzoin condensation. UNIT-V: Reagents and Modern Synthetic Reactions: Lithium diisopropylamide (LDA), Azobisisobutyronitrile (AIBN), Sodium cyanoborohydride (NaBH ₃ CN), <i>meta</i> -Chloroperbenzoic acid (m-CPBA), Dicyclohexycarbodiimide (DCC), Dimethyl aminiopyridine (DMAP), n- Bu ₃ SnH, Diazobicyclo[5.4.0]undec-7-ene (DBU), Diisopropylazodicarboxylate (DIAD), Diethylazodicarboxylate (DEAD), <i>N</i> - bromosuccinimide (NBS), Tetramethyl piperiridin-1-oxyl (TEMPO),
Extended Professional Component (is a part of	 Phenyltrimethylammonium tribromide (PTAB). Diazomethane and Zn-Cu. Suzuki coupling, Heck reaction, Negishi reaction, Baylis-Hillman reaction. Robinson annulation, Stork-enamine reaction, Biginelli reaction. Questions related to the above topics, from various competitive examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others to be solved (To be discussed during the Tutorial hours)
internal component only, Not to be included in the external examination question paper)	
Skills acquired from this course	Knowledge, Problem solving, Analytical ability, Professional Competency, Professional Communication and Transferable skills.
Recommended Text	1. J. March and M. Smith, <i>Advanced Organic Chemistry</i> , 5th ed., John-Wiley and Sons.2001.

	2. E. S. Gould, Mechanism and Structure in Organic Chemistry, Holt,
	Rinehart and Winston Inc., 1959.
	3. P. S. Kalsi, <i>Stereochemistry of carbon compounds</i> , 8 th edn, New Age
	International Publishers, 2015.
	4. P. Y.Bruice, Organic Chemistry, 7 th edn., Prentice Hall, 2013.
	5. R. T. Morrison, R. N. Boyd, S. K. BhattacharjeeOrganic Chemistry,
	7 th edn., Pearson Education,2010.
Reference	1. S. H. Pine, Organic Chemistry, 5 th edn, McGraw Hill
Books	International Editionn,1987.
	2. L. F. Fieser and M. Fieser, Organic Chemistry, Asia Publishing
	House, Bombay,2000.
	3. E.S. Gould, Mechanism and Structure in Organic Chemistry, Holt,
	Rinehart and Winston Inc., 1959.
	4. T. L. Gilchrist, <i>Heterocyclic Chemistry</i> , Longman Press, 1989.
	5. J. A. Joule and K. Mills, Heterocyclic Chemistry, 4 th ed., John-
	Wiley,2010.
Website and	1.https://sites.google.com/site/chemistryebookscollection02/home/organic-
e-learning	chemistry/organic
source	2. https://www.organic-chemistry.org/
Course Learnin	g Outcomes (for Mapping with POs and PSOs)

Students will be able:

CO1: To recall the basic principles of aromaticity of organic and heterocyclic compounds.

CO2: To understand the mechanism of various types of organic reactions.

CO3: To predict the suitable reagents for the conversion of selective organic compounds.

CO4: To correlate the principles of substitution, elimination, and addition reactions.

CO5:Todesign new routes to synthesis organic compounds.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	М	S	S	S	S	М
CO 2	М	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	M	S	S
CO 4	М	S	S	S	S	M	S	S	S	S
CO 5	М	S	Μ	S	S	Μ	S	Μ	S	S

3 – Strong, 2 – Medium, 1 - Low

CO/PO PSO1 PSO2 PSO3 PSO4 PSO5						
	CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5

CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
C05	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

3 – Strong, 2 – Medium, 1 - Lov	W
---------------------------------	---

2	.2

2.2	1								
Title of the	PHYSIC	AL CHEM	ISTI	RY-I					
Course									
Paper No.	Core VI								
Category	Core	Year	Ι	Credits	4	Course			
		Semester	II			Code			
Instructional	Lecture	Tutorial	Lal	b Practice		Total			
hours per week	5	1	-			6			
Prerequisites	Basic con	icepts of ph	ysic	al chemist	ry				
Objectives of the	To recall	the fundam	ienta	ls of thern	nody	namics and the	e composition of		
course	-	olar quantiti							
	To under	stand the cla	assica	al and stati	stical	l approach of th	he functions		
	To comp	are the sign	nifica	nce of M	axwo	ell-Boltzman,	Fermi-Dirac and		
	Bose-Einstein								
	To correlate the theories of reaction rates for the evaluation of								
	thermodynamic parameters.								
	To study	the mechani	ism a	nd kinetic	s of 1	reactions.			
Course Outline	UNIT-I:	Classical	Th	ermodyna	mics	s: Partial m	olar properties-		
	Chemical	potential,	Gi	bb's-Duhe	em	equation-binar	ry and ternary		
	systems.	Determinati	on o	f partial m	olar	quantities. The	ermodynamics of		
	real g	ases -	F	ugacity-	de	termination	of fugacity		
	bygraphi	almethod.T		•••			non-ideal binary		
				•			f ideal and non-		
			-	-					
	ideal mixtures. Activity and activity coefficients-standard states - determination-vapourpressure,EMFandfreezing point methods.								
	UNIT-II: Statistical thermodynamics: Introduction of statistical								
		namicsconc							
	robabiliti	es-distributi	on	of disting	guisha	able and nor	n-distinguishable		
	particles.	Assemblies,	en	sembles,	cano	onical particle	es. Maxwell -		
	Boltzmar	n, Fermi D	Dirac	& Bose-H	Einste	ein Statistics-	comparison and		
	applicatio	ons.Partition	fun	ctions-eva	luatio	on of translation	onal, vibrational		

	and rotational partition functions for monoatomic, diatomic and polyatomic ideal gases. Heat capacity of mono and di atomic gases-
	ortho and para hydrogen. Heat capacity of solids-Einstein and Debye
	models.
	UNIT-III: Irreversible Thermodynamics: Theories of conservation of
	mass and energy entropy production in open systems by heat, matter and
	current flow, force and flux concepts.Onsager theory-validity and
	verification- Onsager reciprocal relationships. Electro kinetic and
	thermo mechanical effects-Application of irreversible thermodynamics
	to biological systems.
	UNIT-IV: Kinetics of Reactions: Theories of reactions-effect of temperature on reaction rates, collision theory of reaction rates, Unimolecular reactions -Lindeman and Christiansen hypothesis-molecular beams, collision cross sections, effectiveness of
	collisions,Potential energy surfaces. Transition state theory-evaluation of thermodynamicparameters of activation-applications of ARRT to reactions between atoms and molecules. Factors determine the reaction rates in solution - primary salt effect and secondary salt effect,
	Homogeneous catalysis- acid- base catalysis-mechanism of acid base catalyzed reactions-Bronsted catalysis law, enzyme catalysis-Michelis- Menton catalysis.
	UNIT-V: Kinetics of complex and fast reactions: Kinetics of
	complex reactions, reversible reactions, consecutive reactions, parallel
	reactions, chain reactions. Chain reactions-chain length, kinetics of H_2
	$-Cl_2\& H_2 - Br_2$ reactions (Thermal and Photochemical reactions) -
	Rice Herzfeldmechanism. Study of fast reactions-relaxation methods-
	temperature and pressure jump methods electric and magnetic field jump methods -stopped flow flash photolysis methods and pulse
	radiolysis.Kinetics of polymerization-free radical, cationic,anionic
	polymerization - Polycondensation.
Extended	Questions related to the above topics, from various competitive
Professional	examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others
Component (is a	to be solved
part of internal	(To be discussed during the Tutorial hours)
component only,	
Not to be included	
in the external examination	
question paper)	
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional
from this course	Competency, Professional Communication and Transferable skills.
Recommended	1. J. Rajaram and J.C. Kuriacose, Thermodynamics for Students of
Text	Chemistry, 2nd edition, S.L.N.Chand and Co., Jalandhar, 1986.
	2. I.M. Klotz and R.M. Rosenberg, Chemical thermodynamics, 6th
	edition, W.A.BenjaminPublishers, California, 1972.
	3. M.C. Gupta, Statistical Thermodynamics, New Age International,

	Pvt. Ltd., New Delhi, 1995.
	4. K.J. Laidler, Chemical Kinetics, 3rd edition, Pearson, Reprint -
	2013.
	5. J. Rajaram and J.C. Kuriokose, Kinetics and Mechanisms of
	chemical transformation, Macmillan India Ltd, Reprint - 2011.
Reference Books	1. D.A. Mcqurrie And J.D. Simon, Physical Chemistry - A
	Molecular Approach, Viva Books Pvt. Ltd., New Delhi, 1999.
	2.R.P. Rastogi and R.R. Misra, Classical Thermodynamics, Vikas
	Publishing, Pvt. Ltd., New Delhi, 1990.
	3. S.H. Maron and J.B. Lando, Fundamentals of Physical Chemistry,
	Macmillan Publishers, New York, 1974
	4. K.B. Ytsiimiriski, "Kinetic Methods of Analysis", Pergamom
	Press,1996.
	5. Gurdeep Raj, Phase rule, Goel Publishing House, 2011.
Website and	1. <u>https://nptel.ac.in/courses/104/103/104103112/</u>
e-learning source	2. <u>https://bit.ly/3tL3GdN</u>
Course Learning C	Dutcomes (for Mapping with POs and PSOs)
Students will be able	e:

Students will be able:

CO1: To explain the classical and statistical concepts of thermodynamics.

CO2: To compare and correlate the thermodynamic concepts to study the kinetics of chemical reactions.

CO3: To discuss the various thermodynamic and kinetic determination.

CO4: To evaluate the thermodynamic methods for real gases ad mixtures.

CO5:To compare the theories of reactions rates and fast reactions.

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	М
CO 2	M	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	Μ	S	S
CO 4	М	S	S	S	S	M	S	S	S	S
CO 5	М	S	М	S	S	М	S	М	S	S

3 – Strong, 2 – Medium, 1 - Low

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3

CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

3 – Strong, 2 – Medium, 1 – Low	V
---------------------------------	---

2.3							
Title of the	INORGA	NIC CHE	MIS	TRY PRA	CTI	CAL	
Course							
Paper No.	Core VII	-			-		
Category	Core	Year	I Credits 4			Course	
		Semester	II			Code	
Instructional	Lecture Tutorial Lab Practice Total						
hours per week	-	1	5			6	
Prerequisites						litative analy	
Objectives of the course	for the qu To recall	To understand and enhance the visual observation as an analytical tool for the quantitative estimation of ions. To recall the principle and theory in preparing standard solutions.					
Course Outline	To train the students for improving their skill in estimating the amount of ion accurately present in the solution To estimate metal ions, present in the given solution accurately without using instruments. To determine the amount of ions, present in a binary mixture accurately.						
	 UNIT-I: Preparation of metal complexes: Preparation of inorganic complexes: a)Preparation of hexathioureacopper(I) chloridedihydrate b) Preparation of <i>cis</i>-Potassium tri oxalate diaquachromate(III) c)Preparation of sodium trioxalatoferrate(III) d)Preparation of hexathiourealead(II) nitrate UNIT-II: Complexometric Titration: a)Determination of calcium and lead in a mixture (pH control). b)Determination of manganese in the presence of iron. c)Determination of nickel in the presence of iron. 						
Extended Professional Component (is a part of internal	examinat to be solv	Questions related to the above topics, from various competitive examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others to be solved (To be discussed during the Tutorial hours)					

Knowledge, Problem solving, Analytical ability, Professional
Competency, Professional Communication and Transferable skills.
1. A. JeyaRajendran, Microanalytical Techniques in Chemistry:
Inorganic Qualitative Analysis, United global publishers, 2021.
2. V. V. Ramanujam, Inorganic Semimicro Qualitative Analysis;
3rded., The National Publishing Company, Chennai, 1974.
3. Vogel's Text book of Inorganic Qualitative Analysis, 4thed., ELBS,
London.
1. G. Pass, and H. Sutcliffe, Practical Inorganic Chemistry; Chapman
Hall, 1965.
2. W. G. Palmer, Experimental Inorganic Chemistry; Cambridge
University Press, 1954.
•

Students will be able:

CO1: To identify the anions and cations present in a mixture of salts.

CO2: To apply the principles of semi micro qualitative analysis to categorize acid radicals and basic radicals.

CO3: To acquire the qualitative analytical skills by selecting suitable confirmatory tests and spot tests.

CO4: To choose the appropriate chemical reagents for the detection of anions and cations. **CO5**:To synthesize coordination compounds in good quality.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	М
CO 2	М	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	Μ	S	S
CO 4	М	S	S	S	S	M	S	S	S	S
CO 5	М	S	М	S	S	Μ	S	М	S	S

CO-PO Mapping (Course Articulation Matrix)

3 – Strong, 2 – Medium, 1 - Low

CO /POPSO1PSO2PSO3PSO4PSO5

CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

2.4										
Title of the	PHYSIC	PHYSICAL CHEMISTRY PRACTICAL								
Course										
Paper No.	Core VIII									
Category	Core	Year	Ι	Credits	4	Course				
		Semester	II			Code				
Instructional	Lecture	Tutorial	Lat) Practice		Total				
hours per week	-	1	3			4				
Prerequisites		wledge of p								
Objectives of the					cond	uctivity expe	riments through			
course		metric titrat								
							coefficient, and			
	activation energy of the reaction by following pseudo first order									
	kinetics.									
		1		•		-	system forming			
	-	-	solıd	and fin	id it	s eutectic te	emperatures and			
	composit			0 1		0 1 · · 1				
				1		f oxalic acid o				
							gen ion, charge			
			nd N	laxwell's	speed	distribution	by computational			
	calculatio	n.								
Course Outline	UNIT-I:									
	1. Dist	ribution La	w - S	study of A	ssoci	ation of Benzo	oic Acid in			
		zene.		5						
	2 64	1	. : 1 : 1.	•	4	641				
		iy of the equ	lilibr	ium const	ant of	t the reaction t	between KI and			
	I_2 .	Vination								
	UNIT-II		2			•				
	1. Study	the kinetic	s of	acid hyd	rolys	is of an este	r, determine the			

	temperature coefficient and also the activation energy of the reaction.
	2. Study the kinetics of the reaction between acetone and iodine in acidic medium by half-life method and determine the order with respect to iodine and acetone.
	3. Kinetics – Persulphate – Iodide Reaction – Determination of order, effect of Ionic strength on rate constant.
	 4. Primary salt effect for the reaction between persulphate and iodide. 5. Study of inversion of cane sugar in the presence of acid using polarimeter.
	UNIT-III: Phase diagram
	Construction of phase diagram for a simple binary system
	1. Naphthalene-phenanthrene
	2. Benzophenone- diphenyl amine
	Adsorption
	Adsorption of oxalic acid on charcoal & determination of surface area (Freundlich isotherm only).
Extended	Questions related to the above topics, from various competitive
Professional	examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others
Component (is a	to be solved
part of internal	(To be discussed during the Tutorial hours)
component only,	
Not to be included	
in the external	
examination	
question paper)	
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional
from this course	Competency, Professional Communication and Transferable skills.
Recommended Text	1. B. Viswanathan and P.S.Raghavan, Practical Physical Chemistry, Viva Books, New Delhi, 2009.
Text	 Sundaram, Krishnan, Raghavan, Practical Chemistry (Part II), S.
	Viswanathan Co. Pvt., 1996.
	3. V.D. Athawale and Parul Mathur, Experimental Physical Chemistry,
	New Age International (P) Ltd., New Delhi, 2008.
	4. E.G. Lewers, Computational Chemistry: Introduction to the Theory
	and Applications of Molecular and Quantum Mechanics, 2 nd Ed.,
	Springer, New York, 2011.
Reference Books	1. J. B. Yadav, Advanced Practical Physical Chemistry, Goel
	Publishing House, 2001.
	2. G.W. Garland, J.W. Nibler, D.P. Shoemaker, Experiments in Physical Chemistry, 8th edition, McGraw Hill, 2009.
	3. J. N. Gurthu and R. Kapoor, Advanced Experimental Chemistry, S.
	Chand and Co., 1987.
	4. Shailendra K Sinha, Physical Chemistry: A laboratory Manual,
	Narosa Publishing House Pvt, Ltd., New Delhi, 2014.
	5. F. Jensen, Introduction to Computational Chemistry, 3 rd Ed., Wiley-

	Blackwell.
Website and	https://web.iitd.ac.in/~nkurur/2015-
e-learning source	16/Isem/cmp511/lab_handout_new.pdf
Course Learning C	Dutcomes (for Mapping with POs and PSOs)
Students will be able	e:
CO1: To recall the p	principles associated with various physical chemistry experiments.
CO2: To scientifical	lly plan and perform all the experiments.
CO3: To observe an	d record systematically the readings in all the experiments.
CO4: To calculate a graphical data.	nd process the experimentally measured values and compare with
CO5: To interpret the societal development	he experimental data scientifically to improve students' efficiency for ats.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	M
CO 2	М	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	M	S	S
CO 4	М	S	S	S	S	M	S	S	S	S
CO 5	Μ	S	Μ	S	S	Μ	S	Μ	S	S

CO-PO Mapping (Course Articulation Matrix)

Level of Correlation between PSO's and CO's

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

3 – Strong, 2 – Medium, 1 - Low	3 –	- Strong,	2 – Medium,	1 - Low
---------------------------------	-----	-----------	-------------	---------

2.5

Title of the	MOLECULAR SPECTROSCOPY
Course	

Paper No.	Elective	II									
Category	Elective	Year	Ι	Credits	3	Course					
		Semester	II			Code					
Instructional	Lecture	Tutorial	Lab Practice Total								
hours per week	3	1	-			4					
Prerequisites	Basic knowledge of spectroscopy										
Objectives of the	To understand the influence of rotation and vibrations on the spectra of										
course	the polyatomic molecules.										
	To study the principle of Raman spectroscopy, ESR spectroscopy, EPR										
	-			-		in Mass spectro					
	-		-	-		-	ple to interpret				
	U U	0 0				electronic transit					
							erms of splitting				
	and coup	oling patterr	ns us	sing corre	latio	n techniques s	uch as COSY,				
		, NOESY.									
			uctu	ral elucida	ation	of molecules	using different				
	1	echniques.		D 0			1				
Course Outline				-	-		onal spectra of				
							ational spectral				
		-				-	Classical theory				
	of the Ra	man effect,	pola	rizability a	is a t	ensor, polarizab	oility ellipsoids,				
	quantum	theory of th	e Ra	man effec	t, Pu	re rotational Ra	aman spectra of				
	linear an	d asymmetr	ric to	op molecu	les,	Stokes and an	ti-Stokes lines.				
	Vibration	al Raman sp	oectra	a, Raman a	ictivi	ty of vibrations	, rule of mutual				
	exclusion	, rotational	fine	structure-	O ar	nd S branches,	Polarization of				
	Raman sc	attered phot	ons.								
	UNIT-II:	Vibrationa	1 S	pectrosco	py:	Vibrations	of molecules,				
							rgy expression,				
							heir symmetry,				
						energies of					
							of isotopic				
				-			onal spectra of				
							of the Born-				
							c molecules –				
		1 1 ·				-	ncies. Influence ecule, P, Q, R				
				-	-	•	and symmetric				
	top molec	-	i per	pendiculai	VIUI	ations of inical	and symmetric				
			spe	ctrosconv	and	IR Spectrosco	py: UV-Visible				
			-				for conjugated				
	-						ctra of aromatic				
		ocyclic com	-		,	1					
		•			ger	print region –	Far IR region				
	Applicati	ons of IR	spect	croscopy t	o id	entify alkane,	alkene, alkyne,				

aromatic compounds, nitrile and aromatic residues, Identification of alcohols, ethers, phenols, amines and carbonyl compounds such as ketones, aldehydes, esters, amides, acids, conjugated carbonyls compounds and other functional groups- Effect of hydrogen bonding and effect of solvent on vibrational frequencies.
UNIT-IV:NMR spectroscopy: Introduction-Nuclear spin states- Nuclear Magnetic moments-Absorption of Energy-Resonance- Instrumentation (Principle only): Continuous wave method, FT NMR- chemical shift and its measurements, factors affecting the chemical shift including anisotropic effect-relaxation processes-Spin-spin coupling- Coupling constant –Multiplicity-Spin systems-NOE effects-1H NMR of simple aliphatic and aromatic compounds. Principles of ¹³ C NMR,- proton decoupled and off – resonance ¹³ C NMR spectra – DEPT methods- factors affecting 13C chemical shift - ¹³ C NMR spectra of simple organic molecules. Problem solving (for molecules with a maximum number of C10). Brief introduction to 2D NMR – COSY, NOESY. Introduction to 31P, 19F NMR.
UNIT-V:Mass Spectrometry, EPR and Mossbauer Spectroscopy: Introduction- Principles- Instrumentation-Ionization techniques such as Chemical ionization, Electron ionization, ESI, FD, FAB, MALDI. Applications of mass spectra to elucidate molecular formula and structure. Mc. Lafferty rearrangement-Nitrogen rule-Interpretation of fragmentation pattern of aliphatic alcohols, aldehydes, esters, ethers, hydrocarbons, carboxylic acids, amines, halogen compounds and simple aromatic compounds. Appearance and significance of isotopic peaks. Effect of isotopes on the appearance of mass spectrum.EPR spectra of anisotropic systems - anisotropy in g-value, causes of anisotropy, anisotropy in hyperfine coupling, hyperfine splitting caused by quadrupole nuclei. Zero-field splitting (ZFS) and Kramer's degeneracy. Applications of EPR to organic and inorganic systems. Structural elucidation of organic compounds by combined spectral techniques.Principle of Mossbauer spectroscopy: Doppler shift, recoil energy. Isomer shift, quadrupole splitting, magnetic interactions. Applications: Mossbauer spectra of high and low-spin Fe and Sn compounds.
Questions related to the above topics, from various competitive examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others
to be solved (To be discussed during the Tutorial hours)

question paper)	
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional
from this course	Competency, Professional Communication and Transferable skills.

Recommended	1. C. N. Banwell and E. M. McCash, Fundamentals of Molecular
Text	Spectroscopy, 4 th Ed., Tata McGraw Hill, New Delhi, 2000.
	2. R. M. Silverstein and F. X. Webster, <i>Spectroscopic Identification</i>
	of Organic Compounds, 6 th Ed., John Wiley & Sons, New York,
	2003.
	3. W. Kemp, <i>Applications of Spectroscopy</i> , English Language Book
	Society, 1987.
	4. D. H. Williams and I. Fleming, <i>Spectroscopic Methods in Organic</i>
	Chemistry, 4 th Ed., Tata McGraw-Hill Publishing Company, New
	Delhi, 1988.
	5. R. S. Drago, <i>Physical Methods in Chemistry</i> ; Saunders:
	Philadelphia, 1992.
Reference Books	1. P.W. Atkins and J. de Paula, <i>Physical Chemistry</i> , 7 th Ed., Oxford
	University Press, Oxford, 2002.
	2. I. N. Levine, <i>Molecular Spectroscopy</i> , John Wiley & Sons, New
	York, 1974.
	3. A. Rahman, Nuclear Magnetic Resonance-Basic Principles,
	Springer-Verlag, New York, 1986.
	4. K. Nakamoto, Infrared and Raman Spectra of Inorganic and
	coordination Compounds, PartB: 5th ed., John Wiley& Sons Inc.,
	New York, 1997.
	5. J. A. Weil, J. R. Bolton and J. E. Wertz, <i>Electron Paramagnetic</i>
	Resonance; Wiley Interscience, 1994.
Website and	1. https://onlinecourses.nptel.ac.in/noc20_cy08/preview
e-learning source	2. https://www.digimat.in/nptel/courses/video/104106122/L14.html
Course Learning (Outcomes (for Mapping with POs and PSOs)

Students will be able:

CO1: To understand the importance of rotational and Raman spectroscopy.

CO2: To apply the vibrational spectroscopic techniques to diatomic and polyatomic molecules.

CO3: To evaluate different electronic spectra of simple molecules using electronic spectroscopy.

CO4: To outline the NMR, 13 C NMR, 2D NMR – COSY, NOESY, Introduction to 31 P, 19 FNMR and ESR spectroscopic techniques.

CO5:To develop the knowledge on principle, instrumentation and structural elucidation of simple molecules using Mass Spectrometry, EPR and Mossbauer Spectroscopytechniques.

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
--	-----	-----	-----	-----	-----	-----	-----	-----	-----	------

CO 1	S	S	S	S	M	S	S	S	S	Μ
CO 2	Μ	S	S	S	S	М	S	S	S	S
CO 3	S	S	Μ	S	S	S	S	Μ	S	S
CO 4	Μ	S	S	S	S	М	S	S	S	S
CO 5	Μ	S	М	S	S	М	S	М	S	S

Level of Correlation between PSO's and CO's

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
C05	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

3 – Strong, 2 – Medium, 1 - Low

2.6							
Title of the	BIO-INC	DRGANIC	AND	MEDICI	NAL	CHEMISTR	Y
Course							
Paper No.	Elective	IV	-				
Category	Elective	Year	Ι	Credits	3	Course	
		Semester	II			Code	
Instructional	Lecture	Tutorial	Lat	Practice		Total	
hours per week	3	1	-			4	
Prerequisites		owledge of					
Objectives of the		stand the rol					
course			-	-		of iron, sulpur	•
	-	the toxicity				es.	
		nowledge o					
Course Oratline		s on various				<u>.</u>	t and stansas of
Course Outline						_	t and storage of
							n and potassium
	_		-			=	Zinc enzymes-
		-			-		zymes–catalase,
	peroxidas	e. Coppere	nzyn	nes – suj	perox	ide dismutase	e, Plastocyanin,
	Cerulopla	ismin, T	yrosi	inase.	Coer	zymes -	Vitamin-B12
	coenzyme	es.Enzyme 1	cineti	cs: Miche	elis -	Menton equa	tion - Effect of
	pH, temp	perature on	enz	yme reac ⁻	tions.	Factors cont	tributing to the
	efficiency	v of enzyme.					-
				roteins:	Oxvg	en carriers-H	emoglobin and
		_					Binding of CO,
							redox system:
					-	-	tochrome P-450.
	-			-		-	in. Iron-sulphur
				-		-	
	proteins-						
				-		• •	f nitrogen fixing
	_		-	-			in nitrogenase-
	-	1 1	-	-			al complexes of
	_	_		tion via	nitrid	e formation a	nd reduction of
	dinitrogen	n to ammoni	a.				
							rgets, Receptors,
			ug –	- receptor	r int	eractions, Net	urotransmission-
	Neurotran				C.		1 1'
	History	•		•		U	ead discovery:
	-						sources, marine
		-				ation of side ef	
	studies.	minzation	meth	ious: Stel	leocn	emistry, Biol	sosterism, SAR
	studies.						

	UNIT-IV: Drug Design: Drug design strategies-Rational drug design: Inhibitors of ACE: Structure based drug design: Anti HIV agents:
	Inhibitors of ACE; Structure based drug design: Anti HIV agents; Ligand based approach.
	Design of agonist and antagonist: β_2 -Agonists and the treatment of
	asthma, Discovery of the H2-receptor antagonists
	Pro drug concept: prodrugs of ampicillin, elanapril, propranolol.
	UNIT-V:Pharmacological activity: Antibiotics: Penicillin; Antimalerials: Trimethoprim; NSAIDS: Paracetamol, Ibuprofen, Diclophenac sodium, Antidepressants: Fluoxetine, Anti-histamines, Anti-tuberclosis agents: Isoniazide, Anti-cancer agents: Vinblastine, Taxol
Extended	Questions related to the above topics, from various competitive
Professional	examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others
Component (is a	to be solved
part of internal	(To be discussed during the Tutorial hours)
component only, Not to be included	
in the external	
examination	
question paper)	
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional
from this course	Competency, Professional Communication and Transferable skills.
Recommended	1. Williams, D.R. –Introdution to Bioinorganic chemistry.
Text	2. F.M. Fiabre and D.R. Williams- The Principles of Bioinorganic
	Chemistry, RoyolSoceity of Chemistry, Monograph for Teachers-31
	3. K.F. Purcell and Kotz., Inorganic chemistry, WB Saunders Co.,
	USA.
	4. G.N. Mugherjea and Arabinda Das, Elements of Bioinorganic
	Chemistry - 1993.
	5. R. Gopalan, V. Ramalingam, <i>Concise Coordination Chemistry</i> , S. Chand, 2001 .
Reference Books	1. M.Satake and Y.Mido, Bioinorganic Chemistry- Discovery
	Publishing House, New Delhi (1996)
	2. M.N. Hughes, 1982, The Inorganic Chemistry of Biological
	processes, II Edition, Wiley London.
	3. R. W. Hay, Bio Inorganic Chemistry, Ellis Horwood, 1987.4. R. M. Roat-Malone, Bio Inorganic Chemistry, John Wiley, 2002.
	5. T. M. Loehr, Iron carriers and Iron proteins, VCH, 1989.
Website and	1. https://www.pdfdrive.com/instant-notes-in-inorganic-chemistry-
e-learning source	the-instant-notes-chemistry-series-d162097454.html
8	2. https://www.pdfdrive.com/shriver-and-atkins-inorganic-chemistry-
	5th-edition-d161563417.html
Course Learning (Dutcomes (for Mapping with POs and PSOs)
1	

Students will be able:

CO1: The students will be able to analyses trace elements.

CO2: Students will be able to explain the biological redox systems.

CO3: Students will gain skill in analyzing the toxicity in metals.

CO4: Students will have experience in diagnosis.

CO5:Learn about the nitrogen fixation and photosynthetic mechanism.

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	М
CO 2	М	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	Μ	S	S
CO 4	М	S	S	S	S	M	S	S	S	S
CO 5	М	S	Μ	S	S	Μ	S	М	S	S

3 – Strong, 2 – Medium, 1 - Low

Level of Correlation between PSO's and CO's

СО /РО	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

3 – Strong, 2 – Medium, 1 - Low

2.7. Skill Enhancement - I

From group G

Cosmetic Chemistry

Unit I

Classification of cosmetic and cosmeceutical products Cosmetic excipients: Surfactants, emollients, preservatives.

Classification and application Skin: Basic and function of skin. structure Oral Cavity: Common problem associated with teeth and gums.

Unit II

Principles of formulation and building blocks of skin care products: Face wash, Moisturizing cream, advantages and disadvantages. Principles of formulation and building blocks of Hair care products:

Conditioning conditioners, shampoo, Hair antidandruff Hair oils. shampoo. formulation Chemistry and of Para-phylene diamine-based hair dye. Toothpaste for bleeding sensitive teeth. Teeth whitening, Mouthwash. gums,

Unit III

Sun protection, Classification of Sunscreens and SPF. Role of herbs in cosmetics: Skin Care:AloeandturmericHaircare:Hennaandamla.Oral care:Neem and cloveAnalytical cosmetics:BIS specification and analytical methods for
shampoo,skincreamandtoothpaste.

Unit IV

Definition of cosmetics as per Indian and EU regulations, Evolution of cosmeceuticals from cosmetics, cosmetics as quasi and OTC drugs. Principles of Cosmetic Evaluation: Principles of sebumeter, corneometer. Measurement of TEWL, Skin Colour, Hair tensile strength, Hair combing properties Soaps, and syndet bars. Evolution and skin benefits.

Unit V

Oily and dry skin, causes leading to dry skin, skin moisturisation. Basic understanding of the terms Comedogenic, dermatitis. Cosmetic problems associated with Hair and scalp: Dandruff, Hair fall causes Cosmetic problems associated with skin: blemishes, wrinkles, acne, prickly heat and body odour. Antiperspirants and Deodorants- Actives and mechanism of action.

2.8 HUMAN RIGHTS

Title of the	HUMAN RIGHTS									
Course										
Paper No.										
Category	Compulsory	Year	Ι	Credits	2	Course				
	paper	Semester	II			Code				
Instructional	Lecture	Tutorial	Lal	b Practice		Total				
hours per week	2	-	-			-				

UNIT-I HISTORICAL DEVELOPMENT AND THEORIES

Definition of Human Rights - Nature, Content, Legitimacy and Priority -Theories on Human Rights - Historical Development of Human Rights.

UNIT-II INTERNATIONAL HUMAN RIGHTS-1

Prescription and Enforcement up to World War II - Human Rights and the UNO-Universal Declaration of Human Rights - International Covenant on Civil and Political Rights - International Covenant on Economic, Social and Cultural Rights and Optional Protocol.

UNIT-III HUMAN RIGHTS DECLARATIONS

U.N. Human Rights Declarations - U.N. Human Commissioner.

UNIT-IV INTERNATIONAL HUMAN RIGHTS-2

Amnesty International - Human Rights and Helsinki Process – Regional Developments - European Human Rights System - African Human Rights System - International Human Rights in Domestic courts.

UNIT-V HUMAN RIGHTS FOR CHILDREN AND WOMEN

Contemporary Issues on Human Rights: Children's Rights - Women's Rights - Dalit's Rights - Bonded Labour and Wages - Refugees - Capital Punishment. Fundamental Rights in the Indian Constitution - Directive Principles of State Policy - Fundamental Duties - National Human Rights Commission.

Reference Books

- 1. International Bill of Human Rights, Amnesty International Publication, 1988.
- 2. Human Rights, Questions and Answers, UNESCO, 1982
- 3. Mausice Cranston What is Human Rights
- 4. Desai, A.R. Violation of Democratic Rights in India

- 5. Pandey Constitutional Law.
- 6. Timm. R.W. Working for Justice and Human Rights.
- 7. Human Rights, A Selected Bibliography, USIS.
- 8. J.C.Johari Human Rights and New World Order.
- 9. G.S. Bajwa Human Rights in India.
- 10. Amnesty International, Human Rights in India.
- 11. P.C.Sinha-International Encyclopedia of Peace, Security
- 12. K. Cheous (Ed) Social Justice and Human Rights (Vols 1-7).
- 13. Devasia, V.V. Human Rights and Victimology.

2.9 MOOC

Title of the Course	Massive Open Online Course									
Paper No.										
Category	Compulsory	Year	Ι	Credits	2	Course				
	paper	Semester	II			Code				
Instructional	Lecture	Tutorial	Lab Practice			Total				
hours per week	2	-	-			2				

Student should undergo an online course conducted at national level, related to Chemistry

ORGAN	IC SVNTH										
		ESIS	S AND PH	IOT	DCHEMISTR	Y					
Core IX				ts A Course							
Core	Year	II	Credits	4	Course						
	Semester	III			Code						
Lecture	Tutorial	Lał) Practice		Total						
5	1	-			6						
-	-	nthet	ically imp	oortar	nt reagents for	any successful					
				nd 10	lentifying suita	ble synthons to					
	•		•	<i>.</i> .	1 .						
	-	-	•								
10 gain t	ne knowledg	ge of	photocher	mear	organic reactio	ons.					
Prelimin systemst framewo alternate available Linear V ofSeebaa activatin approach synthesis UNIT-III Alternate compoun starting Converge concepts and amin synthesis protective Stereospe transposit	ary Plannin audied, anal- ork into sine synthetic = e starting ma /s convergen- ck, regiospe g groups and n, calculation s of stereoch control seebach. no groups. Control ele groups, cific control tion. I: Pericycli and Huckel	ng – lysis mple route ateria ateria t syr cific on of memis Syntl outes onnec and erger Illus lemen action of e	knowns of the rationalp es, key in als and res othesis. syn control e ridgingeles yield, ac stry-contro netic Meth . Synthesis ction appro- resulting at synthes tection of stration of stration of nets: Region vating g lements.	and compore sultime sultime these lement locathese lement locathese lement locathese solution solution f pro- ospec proups Func	unknowns o olex and inter- rsors, retrosyn ediates that w og yield of alter is based on um- nts. Use of pro- s. Examples o ages of conve- oroducts. logy: Retrosyn organic mono a Key intermed ds of alterna ynthesis based oxyl, carboxyl, otection and ific control ele- s, and bridg	f the synthetic rrelated carbon thetic analysis, ouldbe formed, rnativemethods. polung concepts otective groups, n retrosynthetic rgent synthesis, nthetic analysis; and bifunctional liates, available ative methods. I on umpolung carbonyl, thiol deprotection in ements. Use of ging elements. alterations and ann rules; The and correlation					
	Core Lecture 5 Basic kno To under presence To study organic s To apply effect suc To learn To gain t UNIT-I Prelimin systemst framewo alternate available Linear V ofSeebaa activatin approacl synthesis UNIT-II Alternate compoun starting Converge concepts and amin synthesis protective Stereospet transposit	CoreYearSemesterLectureTutorial51Basic knowledge of orTo understand the mersence offunctionalTo study various syorganic synthesis.To apply disconnectiveeffect successful organicTo learn the conceptsTo gain the knowledgeUNIT-I:PlanningPreliminary PlanningPreliminary PlanningPreliminary PlanningSystemstudied, analframework into simalternate syntheticavailable starting meterialsLinear Vs convergentofSeeback, regiospedingactivating groups atapproach, calculationsynthesis of stereocheUNIT-II: Organic StartingAlternate synthetic recompounds via disconstartingmaterialsConvergent and divideconcepts of Seebach.and amino groups.synthesis. Control efficiencyprotective groups,Stereospecific controltransposition.UNIT-III: PericyclingMobius and Huckel	CoreYearIISemesterIIILectureTutorialLat51-Basic knowledge of organTo understand the molecpresence offunctional groutTo study various synthetorganic synthesis.To apply disconnection ateffect successful organic strong and the knowledge ofTo learn the concepts of pTo gain the knowledge ofUNIT-I:PlanninganPreliminaryPlanning –systemstudied, analysisframework into simplealternate synthetic routedavailable starting materiatLinear Vs convergent synoofSeeback, regiospecificactivating groups and bapproach, calculation ofsynthesis of stereochemistUNIT-II: Organic SynthAlternate synthetic routescompounds via disconneedstarting materials andConvergent and divergentconcepts of Seebach. Protoand amino groups. Illustsynthesis. Control elementprotective groups, actiStereospecific control element <tr< th=""><th>CoreYearIICreditsSemesterIIIIIILectureTutorialLab Practice51-Basic knowledge of organic chemistTo understand the molecular comppresence offunctional groups and theTo study various synthetically imporganic synthesis.To apply disconnection approach aeffect successful organic synthesis.To learn the concepts of pericyclic rTo gain the knowledge of photocherUNIT-I:Planning an OrganicPreliminary Planning – knownssystemstudied, analysis of theframework into simple rationalpalternate synthetic routes, key inavailable starting materials and re:Linear Vs convergent synthesis. synofSeeback, regiospecific control eactivating groups and bridgingeleapproach, calculation of yield, acsynthesis of stereochemistry-controUNIT-II: Organic Synthetic MetAlternate synthetic routes. Synthesiscompounds via disconnection apprstarting materials and resultingConvergent and divergent synthesisconcepts of Seebach. Protection ofand amino groups. Illustration osynthesis. Control elements: Regicprotective groups, activating gStereospecific control elements: Regicprotective groups, activating gStereospecific control elements: transposition.</th><th>CoreYearIICredits4SemesterIIIIIIIIIIIILectureTutorialLab Practice51-Basic knowledge of organic chemistryTo understand the molecular complexity presence offunctional groups and their reling to study various synthetically important organic synthesis.To apply disconnection approach and ice effect successful organic synthesis.To learn the concepts of pericyclic reaction to gain the knowledge of photochemicalUNIT-I:Planning an Organic Symp Preliminary Planning – knowns and systemstudied, analysis of the comp framework into simple rationalprecum alternate synthetic routes, key intermavailable starting materials and resulting Linear Vs convergent synthesis. synthesis ofSeeback, regiospecific control eleme activating groups and bridgingelement approach, calculation of yield, advant synthesis of stereochemistry-controlled pUNIT-II: Organic Synthetic Methodo Alternate synthetic routes. Synthesis of compounds via disconnection approach starting materials and resulting yiel Convergent and divergent synthesis, S concepts of Seebach. Protection of hydra and amino groups. Illustration of pro- synthesis. Control elements: Regiospec protective groups, activating groups Stereospecific control elements. Func transposition.UNIT-III: Pericyclic Reactions: Wood Mobius and Huckel concept, FMO, F</th><th>CoreYearIICredits4Course CodeSemesterIII-6Basic knowledge of organic chemistryTo understand the molecular complexity of carbon sk presence offunctional groups and their relative positions To study various synthetically important reagents for organic synthesis.To apply disconnection approach and identifying suita effect successful organic synthesis.To learn the concepts of pericyclic reaction mechanisms To gain the knowledge of photochemical organic reaction systemstudied, analysis of the complex and inte framework into simple rationalprecursors, retrosyn alternate synthetic routes, key intermediates that w available starting materials and resulting yield of alte Linear Vs convergent synthesis. Synthesis based on um ofSeeback, regiospecific control elements. Use of pr activating groups and bridgingelements. Examples o approach, calculation of yield, advantages of conve synthesis of stereochemistry-controlled products.UNIT-II: Organic Synthetic Methodology: Retrosyn Alternate synthetic routes. Synthesis of organic mono a compounds via disconnection approach. Key intermediates that widisconnection approach. Key intermediates starting materials and resulting yields of alternational products.UNIT-II: Organic Synthetic Methodology: Retrosyn Alternate synthetic routes. Synthesis of organic mono a compounds via disconnection approach. Key intermediates tarting materials and resulting yields of alternation of protection and is synthesis. Control elements: Regiospecific control elements: Protection and synthesis. Control elements: Regiospecific control elements: Regiospecific control elements.</th></tr<>	CoreYearIICreditsSemesterIIIIIILectureTutorialLab Practice51-Basic knowledge of organic chemistTo understand the molecular comppresence offunctional groups and theTo study various synthetically imporganic synthesis.To apply disconnection approach aeffect successful organic synthesis.To learn the concepts of pericyclic rTo gain the knowledge of photocherUNIT-I:Planning an OrganicPreliminary Planning – knownssystemstudied, analysis of theframework into simple rationalpalternate synthetic routes, key inavailable starting materials and re:Linear Vs convergent synthesis. synofSeeback, regiospecific control eactivating groups and bridgingeleapproach, calculation of yield, acsynthesis of stereochemistry-controUNIT-II: Organic Synthetic MetAlternate synthetic routes. Synthesiscompounds via disconnection apprstarting materials and resultingConvergent and divergent synthesisconcepts of Seebach. Protection ofand amino groups. Illustration osynthesis. Control elements: Regicprotective groups, activating gStereospecific control elements: Regicprotective groups, activating gStereospecific control elements: transposition.	CoreYearIICredits4SemesterIIIIIIIIIIIILectureTutorialLab Practice51-Basic knowledge of organic chemistryTo understand the molecular complexity presence offunctional groups and their reling to study various synthetically important organic synthesis.To apply disconnection approach and ice effect successful organic synthesis.To learn the concepts of pericyclic reaction to gain the knowledge of photochemicalUNIT-I:Planning an Organic Symp Preliminary Planning – knowns and systemstudied, analysis of the comp framework into simple rationalprecum alternate synthetic routes, key intermavailable starting materials and resulting Linear Vs convergent synthesis. synthesis ofSeeback, regiospecific control eleme activating groups and bridgingelement approach, calculation of yield, advant synthesis of stereochemistry-controlled pUNIT-II: Organic Synthetic Methodo Alternate synthetic routes. Synthesis of compounds via disconnection approach starting materials and resulting yiel Convergent and divergent synthesis, S concepts of Seebach. Protection of hydra and amino groups. Illustration of pro- synthesis. Control elements: Regiospec protective groups, activating groups Stereospecific control elements. Func transposition.UNIT-III: Pericyclic Reactions: Wood Mobius and Huckel concept, FMO, F	CoreYearIICredits4Course CodeSemesterIII-6Basic knowledge of organic chemistryTo understand the molecular complexity of carbon sk presence offunctional groups and their relative positions To study various synthetically important reagents for organic synthesis.To apply disconnection approach and identifying suita effect successful organic synthesis.To learn the concepts of pericyclic reaction mechanisms To gain the knowledge of photochemical organic reaction systemstudied, analysis of the complex and inte framework into simple rationalprecursors, retrosyn alternate synthetic routes, key intermediates that w available starting materials and resulting yield of alte Linear Vs convergent synthesis. Synthesis based on um ofSeeback, regiospecific control elements. Use of pr activating groups and bridgingelements. Examples o approach, calculation of yield, advantages of conve synthesis of stereochemistry-controlled products.UNIT-II: Organic Synthetic Methodology: Retrosyn Alternate synthetic routes. Synthesis of organic mono a compounds via disconnection approach. Key intermediates that widisconnection approach. Key intermediates starting materials and resulting yields of alternational products.UNIT-II: Organic Synthetic Methodology: Retrosyn Alternate synthetic routes. Synthesis of organic mono a compounds via disconnection approach. Key intermediates tarting materials and resulting yields of alternation of protection and is synthesis. Control elements: Regiospecific control elements: Protection and synthesis. Control elements: Regiospecific control elements: Regiospecific control elements.					

	[4+4, Cationic, anionic, and 1,3-dipolar cycloadditions. Cheletropic reactions. ; Electrocyclization and ring opening reactions of conjugated dienes and trienes. Sigmatropic rearrangements: (1,3), (1,5), (3,3) and (5,5)-carbon migrations, degenerate rearrangements. Ionic sigmatropic rearrangements. Group transfer reactions. Regioselectivity, stereoselectivity and periselectivity in pericyclic reactions.
	UNIT-IV: Organic Photochemistry: Reactions of electronically excited ketones; $\pi \rightarrow \pi^*$ triplets; Norrish type-I and type-II cleavage reactions; photo reductions; Paterno-Buchi reactions; Photochemistry of α,β -unsaturated ketones; cis-trans isomerisation. Photon energy transfer reactions, Photo cycloadditions, Photochemistry of aromatic compounds; photochemical rearrangements; photo-stationery state; di- π -methane rearrangement; Reaction of conjugated cyclohexadienone to 3,4-diphenyl phenols; Barton's reactions.
	UNIT-V: Heterocyclics: Synthesis and reactions of furan, pyrrole, thiophene and pyridines: Furans- Fiest-Benary furan synthesis, Pyrroles and pyrrolidines-Barton. Zard reaction. Hofmann-Loffler-Freytag reaction. Thiophenes-Hinsberg synthesis of thiophene derivatives. Pyridines- Hantzsch (Dihydro)-pyridine synthesis. Condensed heterocycles: Synthesis and reactions of Indole, Quinolines and Isoquinolines: Indoles. Indoles - Fischer indole synthesis, Madelung indole synthesis, Nenitzescu indole synthesis. Quinolines and isoquinolines- Bischler-Napieralski reaction. Friedlander synthesis. Meth-Cohn quinoline synthesis. Pfitzinger quinoline synthesis.
Extended Professional Component (is a part of internal component only, Not to be included in the external examination question paper)	Questions related to the above topics, from various competitive examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others to be solved (To be discussed during the Tutorial hours)
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional
from this course	Competency, Professional Communication and Transferable skills.
Recommended	1. F. A. Carey and Sundberg, Advanced Organic Chemistry, 5thed,
Text	Tata McGraw-Hill, New York, 2003. 2. J. March and M. Smith, Advanced Organic Chemistry, 5 th ed.,
	John-Wiley and sons, 2007.
	3. R. E. Ireland, Organic synthesis, Prentice Hall India, Goel
	publishing house, 1990.
	4. Clayden, Greeves, Warren, Organic Chemistry, Oxford University Press, Second Edition, 2016.
	11000, DOUDIN LAIUDII, 2010.

e-learning source		
Website and	. <u>https://rushim.ru/books/praktikum/Monson.pdf</u>	
	Reactions, New Age International Publishers, New Delhi, 2	012.
	5. Jagdamba Singh and Jaya Singh, Photochemistry and Pe	
	1972.	
	H. O. House. Modern Synthetic reactions, W.A. Benjan	nin Inc,
	Cambridge University Press, Cambridge, 2007.	
	. W. Caruthers, Some Modern Methods of Organic Synthesis	s 4 th edn,
	Great Britain, 2004.	
	2. J.A. Joule, G.F. Smith, Heterocyclic Chemistry, Garden Cit	y Press,
Reference Books	. Gill and Wills, Pericyclic Reactions, Chapman Hall, London	n, 1974.
	Edition, 2011.	
	5. M. B. Smith, Organic Synthesis 3 rd edn, McGraw Hill Inter	national

Students will be able:

CO1:To recall the basic principles of organic chemistry and to understand the various reactions of organic compounds with reaction mechanisms.

CO2:To understand the versatility of various special reagents and to correlate their reactivity with various reaction conditions.

CO3:To implement the synthetic strategies in the preparation of various organic compounds. **CO4:**To predict the suitability of reaction conditions in the preparation of tailor-made organic compounds.

CO5:To design and synthesize novel organic compounds with the methodologies learnt during the course.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	М
CO 2	М	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	М	S	S
CO 4	М	S	S	S	S	M	S	S	S	S
CO 5	М	S	М	S	S	М	S	М	S	S

CO-PO Mapping (Course Articulation Matrix)

3 – Strong, 2 – Medium, 1 - Low

СО /РО	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3

CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

3 –	Strong.	2 – Medium	. 1 - Low
•	Strong,	a miculum	, 1 100

Title of the Course COORDINATION CHEMISTRY – I Paper No. Core X Category Core X Basic Semester III Credits 4 Course Instructional hours per week Lecture Tutorial Lab Practice Total Objectives of the course Basic knowledge of inorganic chemistry Objectives of bonding in coordination compounds. To gain insights into the modern theories of bonding in coordination compounds. To learn various methods to determine the stability constants of complexes. To understand and construct correlation diagrams and predict the electronic transitions that are taking place in the complexes. To describe various substitution and electron transfer mechanistic pathways ofreactions in complexes. To evaluate the reactions of ocathedral and square planar complexes. Course Outline UNIT-I: Modern theories of coordination compounds: Crystal field theory - splitting of d orbitals in octahedral, tetrahedral and square planar symmetrics - measurement of 10Dq - factors affecting 10Dq - spectrochemical series - crystal field stabilisation energy for high spin and low spin complexes: evidences for crystal field splitting - site selections in spinels and antispinels - Jahn Teller distortions and its consequences.Molecular Orbital Theory and energy level diagrams concept of Weak and strong fields, Sigma and pi bonding in octahedral, square planar and tetrahedral complexes. UNIT-II: Spectral characteristics of complexes: Term states for d ions - characte	3.2									
Paper No. Core X Category Core Year II Credits 4 Course Code Instructional hours per week Ecture Tutorial Lab Practice Total Prerequisites Basic knowledge of inorganic chemistry 6 Prerequisites To gain insights into the modern theories of bonding in coordination compounds. To learn various methods to determine the stability constants of complexes. To understand and construct correlation diagrams and predict the electronic transitions that are taking place in the complexes. To describe various substitution and electron transfer mechanistic pathways ofreactions in complexes. Course Outline UNIT-I: Modern theories of coordination compounds: Crystal field theory - splitting of d orbitals in octahedral, tetrahedral and square planar symmetries - measurement of 10Dq - factors affecting 10Dq - spectrochemical series - crystal field stabilisation energy for high spin and low spin complexes. evidences for crystal field splitting - site selections in spinels and antispinels - Jahn Teller distortions and its consequences.Molecular Orbital Theory and energy level diagrams concept of Weak and strong fields, Sigma and pi bonding in octahedral, square planar and tetrahedral complexes. UNIT-II: Spectral characteristics of complexes: Term states for d ions - characteristics of d-d transitions - charge transfer spectra - selection rules for electronic spectra - Orgel correlation diagrams - Sugano-Tanabe energy level diagrams - nephelauxetic series - Racha par	Title of the	COORD	INATION	CHE	MISTRY	– I				
CategoryCoreYearIICredits4Course CodeInstructional hours per weekLectureTutorialLab PracticeTotalPrerequisitesBasic knowledge of inorganic chemistryGogin insights into the modern theories of bonding in coordination comreamed.To gain insights into the modern theories of bonding in coordination complexes.To learn various methods to determine the stability constants of complexes.To describe various substitution and electron transfer mechanistic pathways ofreactions in complexes. To evaluate the reactions of octahedral and square planar complexes. To evaluate the reactions of octahedral and square planar complexes.Course OutlineUNIT-I: Modern theories of coordination compounds: Crystal field theory - splitting of d orbitals in octahedral, tetrahedral and square planar symmetries - measurement of 10Dq - factors affecting 10Dq - spectrochemical series - crystal field stabilisation energy for high spin and low spin complexes.UNIT-II: Spectral characteristics of complexe	Course									
SemesterIIICodeInstructional hours per weekLectureTutorialLab PracticeTotalPrerequisitesBasic knowledge of inorganic chemistryObjectives of the courseTo gain insights into the modern theories of bonding in coordination compounds. To learn various methods to determine the stability constants of complexes. To understand and construct correlation diagrams and predict the electronic transitions that are taking place in the complexes. To describe various substitution and electron transfer mechanistic pathways ofreactions in complexes. To evaluate the reactions of octahedral and square planar complexes. To evaluate the reactions of coordination compounds: Crystal field theory - splitting of d orbitals in octahedral, tetrahedral and square planar symmetries - measurement of 10Dq - factors affecting 10Dq - spectrochemical series - crystal field stabilisation energy for high spin and low spin complexes.UNIT-II: Spectral characteristics of complexes:UNIT-II: Spectral characteristics of complexes:UNIT-II: Spectral characteristics of complexes: selection rules for electronic spectra - Orgel correlation diagrams - sugano-Tanabe energy level diagrams - sugano-Tanabe energy level diagrams - sugano-Tanabe energy level diagrams - spelatucetic series - Racha parameter and calculation of inter-electronic repulsion parameter.	Paper No.	Core X	Core X							
Instructional hours per weekLectureTutorialLab PracticeTotalPrerequisitesBasic knowledge of inorganic chemistry6Objectives of the courseTo gain insights into the modern theories of bonding in coordination compounds. To learn various methods to determine the stability constants of complexes. To understand and construct correlation diagrams and predict the electronic transitions that are taking place in the complexes. To describe various substitution and electron transfer mechanistic pathways ofreactions in complexes. To evaluate the reactions of octahedral and square planar complexes. To evaluate the reactions of coordination compounds: Crystal field theory - splitting of d orbitals in octahedral, tetrahedral and square 	Category	Core	ore Year II Credits 4 Course							
hours per week51-6PrerequisitesBasic knowledge of inorganic chemistryObjectives of the courseTo gain insights into the modern theories of bonding in coordination compounds. To learn various methods to determine the stability constants of complexes. To understand and construct correlation diagrams and predict the electronic transitions that are taking place in the complexes. To describe various substitution and electron transfer mechanistic pathways ofreactions in complexes. To evaluate the reactions of octahedral and square planar complexes.Course OutlineUNIT-I: Modern theories of coordination compounds: Crystal field theory - splitting of d orbitals in octahedral, tetrahedral and square planar symmetries - measurement of 10Dq - factors affecting 10Dq - spectrochemical series - crystal field stabilisation energy for high spin and low spin complexes- evidences for crystal field splitting - site selections in spinels and antispinels - Jahn Teller distortions and its consequences.Molecular Orbital Theory and energy level diagrams concept of Weak and strong fields, Sigma and pi bonding in octahedral, square planar and tetrahedral complexes.UNIT-II: Spectral characteristics of correlation diagrams - Sugano-Tanabe energy level diagrams - charge transfer spectra - selection rules for electronic spectra - Orgel correlation diagrams - Sugano-Tanabe energy level diagrams - charge transfer spectra - selection rules for electronic spectra - Orgel correlation diagrams - Sugano-Tanabe energy level diagrams - nephelauxetic series - Racha parameter and calculation of inter-electronic repulsion parameter.										
PrerequisitesBasic knowledge of inorganic chemistryObjectives of the courseTo gain insights into the modern theories of bonding in coordination compounds. To learn various methods to determine the stability constants of complexes. To understand and construct correlation diagrams and predict the electronic transitions that are taking place in the complexes. To describe various substitution and electron transfer mechanistic pathways ofreactions in complexes. To evaluate the reactions of octahedral and square planar complexes.Course OutlineUNIT-I: Modern theories of coordination compounds: Crystal field theory - splitting of d orbitals in octahedral, tetrahedral and square planar symmetries - measurement of 10Dq - factors affecting 10Dq - spectrochemical series - crystal field stabilisation energy for high spin and low spin complexes- evidences for crystal field splitting - site selections in spinels and antispinels - Jahn Teller distortions and its consequences.Molecular Orbital Theory and energy level diagrams concept of Weak and strong fields, Sigma and pi bonding in octahedral, square planar and tetrahedral complexes.UNIT-II: Spectral characteristics of complexes: selection rules for electronic spectra - Orgel correlation diagrams - Sugano-Tanabe energy level diagrams - Sugano-Tanabe energy level diagrams - Sugano-Tanabe energy level diagrams - nephelauxetic series - Racha parameter and calculation of inter-electronic repulsion parameter.			Tutorial	Lat	Practice					
Objectives of the courseTo gain insights into the modern theories of bonding in coordination compounds. To learn various methods to determine the stability constants of complexes. To understand and construct correlation diagrams and predict the electronic transitions that are taking place in the complexes. To describe various substitution and electron transfer mechanistic pathways ofreactions in complexes. To evaluate the reactions of octahedral and square planar complexes.Course OutlineUNIT-I: Modern theories of coordination compounds: Crystal field theory - splitting of d orbitals in octahedral, tetrahedral and square planar symmetries - measurement of 10Dq - factors affecting 10Dq - spectrochemical series - crystal field stabilisation energy for high spin and low spin complexes - evidences for crystal field splitting - site selections in spinels and antispinels - Jahn Teller distortions and its consequences.Molecular Orbital Theory and energy level diagrams concept of Weak and strong fields, Sigma and pi bonding in octahedral, square planar and tetrahedral complexes.UNIT-II: Spectral characteristics of complexes: selection rules for electronic spectra - selection rules for electronic spectra - Orgel correlation diagrams - Sugano-Tanabe energy level diagrams - nephelauxetic series - Racha parameter and calculation of inter-electronic repulsion parameter.		-	1	-			6			
coursecompounds. To learn various methods to determine the stability constants of complexes. To understand and construct correlation diagrams and predict the electronic transitions that are taking place in the complexes. To describe various substitution and electron transfer mechanistic pathways ofreactions in complexes. To evaluate the reactions of octahedral and square planar complexes.Course OutlineUNIT-I: Modern theories of coordination compounds: Crystal field theory - splitting of d orbitals in octahedral, tetrahedral and square planar symmetries - measurement of 10Dq - factors affecting 10Dq - spectrochemical series - crystal field stabilisation energy for high spin and low spin complexes- evidences for crystal field splitting - site selections in spinels and antispinels - Jahn Teller distortions and its concept of Weak and strong fields, Sigma and pi bonding in octahedral, square planar and tetrahedral complexes.UNIT-II: Spectral characteristics of complexes: selection rules for electronic spectra - Orgel correlation diagrams - Sugano-Tanabe energy level diagrams - nephelauxetic series - Racha parameter and calculation of inter-electronic repulsion parameter.			Ū	U						
To learn various methods to determine the stability constants of complexes. To understand and construct correlation diagrams and predict the electronic transitions that are taking place in the complexes. To describe various substitution and electron transfer mechanistic pathways ofreactions in complexes. To evaluate the reactions of octahedral and square planar complexes.Course OutlineUNIT-I: Modern theories of coordination compounds: Crystal field theory - splitting of d orbitals in octahedral, tetrahedral and square planar symmetries - measurement of 10Dq - factors affecting 10Dq - spectrochemical series - crystal field stabilisation energy for high spin and low spin complexes- evidences for crystal field splitting - site selections in spinels and antispinels - Jahn Teller distortions and its consequences.Molecular Orbital Theory and energy level diagrams concept of Weak and strong fields, Sigma and pi bonding in octahedral, square planar and tetrahedral complexes.UNIT-II: Spectral characteristics of complexes: selection rules for electronic spectra - Orgel correlation diagrams - Sugano-Tanabe energy level diagrams - nephelauxetic series - Racha parameter and calculation of inter-electronic repulsion parameter.	Objectives of the	-	-	the	modern t	heori	es of bonding	in coordination		
complexes.To understand and construct correlation diagrams and predict the electronic transitions that are taking place in the complexes. To describe various substitution and electron transfer mechanistic pathways ofreactions in complexes. To evaluate the reactions of octahedral and square planar complexes.Course OutlineUNIT-I: Modern theories of coordination compounds: Crystal field theory - splitting of d orbitals in octahedral, tetrahedral and square planar symmetries - measurement of 10Dq - factors affecting 10Dq - spectrochemical series - crystal field stabilisation energy for high spin and low spin complexes- evidences for crystal field splitting - site selections in spinels and antispinels - Jahn Teller distortions and its consequences.Molecular Orbital Theory and energy level diagrams concept of Weak and strong fields, Sigma and pi bonding in octahedral, square planar and tetrahedral complexes.UNIT-II: Spectral characteristics of complexes: Term states for d ions - characteristics of d-d transitions - charge transfer spectra - selection rules for electronic spectra - Orgel correlation diagrams - Sugano-Tanabe energy level diagrams - nephelauxetic series - Racha parameter and calculation of inter-electronic repulsion parameter.	course	-								
To understand and construct correlation diagrams and predict the electronic transitions that are taking place in the complexes. To describe various substitution and electron transfer mechanistic pathways ofreactions in complexes. Course Outline UNIT-I: Modern theories of coordination compounds: Crystal field theory - splitting of d orbitals in octahedral, tetrahedral and square planar symmetries - measurement of 10Dq - factors affecting 10Dq - spectrochemical series - crystal field stabilisation energy for high spin and low spin complexes- evidences for crystal field splitting - site selections in spinels and antispinels - Jahn Teller distortions and its concept of Weak and strong fields, Sigma and pi bonding in octahedral, square planar and tetrahedral complexes. UNIT-II: Spectral characteristics of complexes: selection rules for electronic spectra - Orgel correlation diagrams - Sugano-Tanabe energy level diagrams - nephelauxetic series - Racha parameter and calculation of inter-electronic repulsion parameter.				netho	ds to det	ermi	ne the stability	y constants of		
electronic transitions that are taking place in the complexes. To describe various substitution and electron transfer mechanistic pathways ofreactions in complexes. To evaluate the reactions of octahedral and square planar complexes.Course OutlineUNIT-I: Modern theories of coordination compounds: Crystal field theory - splitting of d orbitals in octahedral, tetrahedral and square planar symmetries - measurement of 10Dq - factors affecting 10Dq - spectrochemical series - crystal field stabilisation energy for high spin and low spin complexes- evidences for crystal field splitting - site selections in spinels and antispinels - Jahn Teller distortions and its consequences.Molecular Orbital Theory and energy level diagrams concept of Weak and strong fields, Sigma and pi bonding in octahedral, square planar and tetrahedral complexes.UNIT-II: Spectral characteristics of complexes: selection rules for electronic spectra - Orgel correlation diagrams - Sugano-Tanabe energy level diagrams - Nephelauxetic series - Racha parameter and calculation of inter-electronic repulsion parameter.						1	1.	1 1 1		
To describe various substitution and electron transfer mechanistic pathways ofreactions in complexes. To evaluate the reactions of octahedral and square planar complexes.Course OutlineUNIT-I: Modern theories of coordination compounds: Crystal field theory - splitting of d orbitals in octahedral, tetrahedral and square planar symmetries - measurement of 10Dq - factors affecting 10Dq - spectrochemical series - crystal field stabilisation energy for high spin and low spin complexes- evidences for crystal field splitting - site selections in spinels and antispinels - Jahn Teller distortions and its consequences.Molecular Orbital Theory and energy level diagrams concept of Weak and strong fields, Sigma and pi bonding in octahedral, square planar and tetrahedral complexes.UNIT-II: Spectral characteristics of complexes: selection rules for electronic spectra - Orgel correlation diagrams - Sugano-Tanabe energy level diagrams - Sugano-Tanabe en			6 1							
pathways ofreactions in complexes. To evaluate the reactions of octahedral and square planar complexes.Course OutlineUNIT-I: Modern theories of coordination compounds: Crystal field theory - splitting of d orbitals in octahedral, tetrahedral and square planar symmetries - measurement of 10Dq - factors affecting 10Dq - spectrochemical series - crystal field stabilisation energy for high spin and low spin complexes- evidences for crystal field splitting - site selections in spinels and antispinels - Jahn Teller distortions and its consequences.Molecular Orbital Theory and energy level diagrams concept of Weak and strong fields, Sigma and pi bonding in octahedral, square planar and tetrahedral complexes.UNIT-II: Spectral characteristics of complexes: selection rules for electronic spectra - Orgel correlation diagrams - Sugano-Tanabe energy level diagrams - nephelauxetic series - Racha parameter and calculation of inter-electronic repulsion parameter.										
To evaluate the reactions of octahedral and square planar complexes.Course OutlineUNIT-I: Modern theories of coordination compounds: Crystal field theory - splitting of d orbitals in octahedral, tetrahedral and square planar symmetries - measurement of 10Dq - factors affecting 10Dq - spectrochemical series - crystal field stabilisation energy for high spin and low spin complexes- evidences for crystal field splitting - site selections in spinels and antispinels - Jahn Teller distortions and its consequences.Molecular Orbital Theory and energy level diagrams concept of Weak and strong fields, Sigma and pi bonding in octahedral, square planar and tetrahedral complexes.UNIT-II: Spectral characteristics of complexes: selection rules for electronic spectra - selection rules for electronic spectra - Orgel correlation diagrams - Sugano-Tanabe energy level diagrams - nephelauxetic series - Racha parameter and calculation of inter-electronic repulsion parameter.						and	electron transf	er mechanistic		
Course OutlineUNIT-I: Modern theories of coordination compounds: Crystal field theory - splitting of d orbitals in octahedral, tetrahedral and square planar symmetries - measurement of 10Dq - factors affecting 10Dq - spectrochemical series - crystal field stabilisation energy for high spin and low spin complexes- evidences for crystal field splitting - site selections in spinels and antispinels - Jahn Teller distortions and its consequences.Molecular Orbital Theory and energy level diagrams concept of Weak and strong fields, Sigma and pi bonding in octahedral, square planar and tetrahedral complexes.UNIT-II: Spectral characteristics of complexes: Term states for d ions - characteristics of d-d transitions - charge transfer spectra - selection rules for electronic spectra - Orgel correlation diagrams - Sugano-Tanabe energy level diagrams - nephelauxetic series - Racha parameter and calculation of inter-electronic repulsion parameter.					-	ral an	d square planar	complexes		
 theory - splitting of d orbitals in octahedral, tetrahedral and square planar symmetries - measurement of 10Dq - factors affecting 10Dq - spectrochemical series - crystal field stabilisation energy for high spin and low spin complexes- evidences for crystal field splitting - site selections in spinels and antispinels - Jahn Teller distortions and its consequences.Molecular Orbital Theory and energy level diagrams concept of Weak and strong fields, Sigma and pi bonding in octahedral, square planar and tetrahedral complexes. UNIT-II: Spectral characteristics of complexes: Term states for d ions - characteristics of d-d transitions - charge transfer spectra - selection rules for electronic spectra - Orgel correlation diagrams - Sugano-Tanabe energy level diagrams - nephelauxetic series - Racha parameter and calculation of inter-electronic repulsion parameter. 	Course Outline									
 planar symmetries - measurement of 10Dq - factors affecting 10Dq - spectrochemical series - crystal field stabilisation energy for high spin and low spin complexes- evidences for crystal field splitting - site selections in spinels and antispinels - Jahn Teller distortions and its consequences. Molecular Orbital Theory and energy level diagrams concept of Weak and strong fields, Sigma and pi bonding in octahedral, square planar and tetrahedral complexes. UNIT-II: Spectral characteristics of complexes: Term states for d ions - characteristics of d-d transitions - charge transfer spectra - selection rules for electronic spectra - Orgel correlation diagrams - Sugano-Tanabe energy level diagrams - nephelauxetic series - Racha parameter and calculation of inter-electronic repulsion parameter. 	Course Outline						-	•		
 spectrochemical series - crystal field stabilisation energy for high spin and low spin complexes- evidences for crystal field splitting - site selections in spinels and antispinels - Jahn Teller distortions and its consequences.Molecular Orbital Theory and energy level diagrams concept of Weak and strong fields, Sigma and pi bonding in octahedral, square planar and tetrahedral complexes. UNIT-II: Spectral characteristics of complexes: Term states for d ions - characteristics of d-d transitions - charge transfer spectra - selection rules for electronic spectra - Orgel correlation diagrams - Sugano-Tanabe energy level diagrams - nephelauxetic series - Racha parameter and calculation of inter-electronic repulsion parameter. 		-						-		
 and low spin complexes- evidences for crystal field splitting - site selections in spinels and antispinels - Jahn Teller distortions and its consequences. Molecular Orbital Theory and energy level diagrams concept of Weak and strong fields, Sigma and pi bonding in octahedral, square planar and tetrahedral complexes. UNIT-II: Spectral characteristics of complexes: Term states for d ions - characteristics of d-d transitions - charge transfer spectra - selection rules for electronic spectra - Orgel correlation diagrams - Sugano-Tanabe energy level diagrams - nephelauxetic series - Racha parameter and calculation of inter-electronic repulsion parameter. 							-	•		
 selections in spinels and antispinels - Jahn Teller distortions and its consequences.Molecular Orbital Theory and energy level diagrams concept of Weak and strong fields, Sigma and pi bonding in octahedral, square planar and tetrahedral complexes. UNIT-II: Spectral characteristics of complexes: Term states for d ions - characteristics of d-d transitions - charge transfer spectra - selection rules for electronic spectra - Orgel correlation diagrams - Sugano-Tanabe energy level diagrams - nephelauxetic series - Racha parameter and calculation of inter-electronic repulsion parameter. 										
 consequences.Molecular Orbital Theory and energy level diagrams concept of Weak and strong fields, Sigma and pi bonding in octahedral, square planar and tetrahedral complexes. UNIT-II: Spectral characteristics of complexes: Term states for d ions - characteristics of d-d transitions - charge transfer spectra - selection rules for electronic spectra - Orgel correlation diagrams - Sugano-Tanabe energy level diagrams - nephelauxetic series - Racha parameter and calculation of inter-electronic repulsion parameter. 							•			
 concept of Weak and strong fields, Sigma and pi bonding in octahedral, square planar and tetrahedral complexes. UNIT-II: Spectral characteristics of complexes: Term states for d ions - characteristics of d-d transitions - charge transfer spectra - selection rules for electronic spectra - Orgel correlation diagrams - Sugano-Tanabe energy level diagrams - nephelauxetic series - Racha parameter and calculation of inter-electronic repulsion parameter. 			-		-					
square planar and tetrahedral complexes. UNIT-II: Spectral characteristics of complexes: Term states for d ions - characteristics of d-d transitions - charge transfer spectra - selection rules for electronic spectra - Orgel correlation diagrams - Sugano-Tanabe energy level diagrams - nephelauxetic series - Racha parameter and calculation of inter-electronic repulsion parameter.		-				•	01	0		
UNIT-II: Spectral characteristics of complexes: Term states for d ions - characteristics of d-d transitions - charge transfer spectra - selection rules for electronic spectra - Orgel correlation diagrams - Sugano-Tanabe energy level diagrams - nephelauxetic series - Racha parameter and calculation of inter-electronic repulsion parameter.		concept o	of Weak and	stro	ng fields, S	Sigma	a and pi bonding	g in octahedral,		
ions - characteristics of d-d transitions - charge transfer spectra - selection rules for electronic spectra - Orgel correlation diagrams - Sugano-Tanabe energy level diagrams - nephelauxetic series - Racha parameter and calculation of inter-electronic repulsion parameter.		square pla	anar and tetr	ahed	ral comple	exes.				
selection rules for electronic spectra - Orgel correlation diagrams - Sugano-Tanabe energy level diagrams - nephelauxetic series - Racha parameter and calculation of inter-electronic repulsion parameter.		UNIT-II:	: Spectral (chara	acteristics	of c	complexes: Ter	rm states for d		
selection rules for electronic spectra - Orgel correlation diagrams - Sugano-Tanabe energy level diagrams - nephelauxetic series - Racha parameter and calculation of inter-electronic repulsion parameter.		ions - cl	naracteristic	s of	d-d trans	itions	s - charge trai	nsfer spectra -		
Sugano-Tanabe energy level diagrams - nephelauxetic series - Racha parameter and calculation of inter-electronic repulsion parameter.		selection	rules for e	lectro	onic spect	ra -	Orgel correlati	ion diagrams -		
parameter and calculation of inter-electronic repulsion parameter.					-		-	-		
		-			-		-			
UNIT-III: Stability and Magnetic property of the complexes:		-								

	Stability of complexes: Factors affecting stability of complexes, Thermodynamic aspects of complex formation, Stepwise and overall formation constants, Stability correlations, statistical factors and chelate effect, Determination of stability constant and composition of the complexes: Formation curves and Bjerrum's half method, Potentiometric method, Spectrophotometric method, Ion exchange method, Polorographic method and Continuous variation method (Job's method)Magnetic property of complexes: Spin-orbit coupling, effect of spin-orbit coupling on magnetic moments, quenching of orbital magnetic moments. UNIT-IV: Kinetics and mechanisms of substitution reactions of octahedral and square planar complexes: Inert and Labile complexes; Associative, Dissociative and SNCB mechanistic pathways for substitution reactions; acid and base hydrolysis of octahedral complexes; Classification of metal ions based on the rate of water replacement reaction and their correlation to Crystal Field Activation Energy: Substitution reactions in square planar complexes: Trans
	Energy; Substitution reactions in square planar complexes: Trans effect, theories of trans effect and applications of trans effect in synthesis of square planar compounds; Kurnakov test.
	UNIT-V: Electron Transfer reactions in octahedral complexes: Outer sphere electron transfer reactions and Marcus-Hush theory; inner sphere electron transfer reactions; nature of the bridging ligand in inner sphere electron transfer reactions.Photo-redox, photo-substitution and photo-isomerisation reactions in complexes and their applications.
Extended Professional Component (is a part of internal	Questions related to the above topics, from various competitive examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others to be solved (To be discussed during the Tutorial hours)
component only, Not to be included in the external examination question paper)	
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional
from this course	Competency, Professional Communication and Transferable skills.
Recommended	1. J E Huheey, EA Keiter, RL Keiter and OK Medhi, Inorganic
Text	Chemistry - Principles of structure and reactivity, 4th Edition,
	Pearson Education Inc., 2006
	2. G L Meissler and D ATarr, Inorganic Chemistry, 3rd Edition,
	Pearson Education Inc., 2008 3. D. Bannerjea, Co-ordination Chemistry, TATA Mcgraw Hill, 1993.
	4. B. N. Figgis, Introduction to Ligand Fields, Wiley Eastern Ltd, 1976.
	5. F. A. Cotton, G. Wilkinson.; C. A. Murillo; M. Bochmann,
	Advanced Inorganic Chemistry, 6thed.; Wiley Inter-science: New York, 1988.

Reference Books	 Keith F. Purcell and John C. Kotz, Inorganic Chemistry, Saunders Publications, USA, 1977. Peter Atkins and Tina Overton, Shriver and Atkins' Inorganic Chemistry, 5th Edition, Oxford University Press, 2010. Basic Inorganic Chemistry, F. A. Cotton, G. Wilkinson, P. L. Guas, John Wiley, 2002, 3rd edn.
	 Concepts and Models of Inorganic Chemistry, B. Douglas, D. McDaniel, J. Alexander, John Wiley, 1994, 3rd edn. Inorganic Chemistry, D. F. Shriver, P. W. Atkins, W. H. Freeman and Co, London, 2010.
Website and e-learning source	https://ocw.mit.edu/courses/5-04-principles-of-inorganic-chemistry-ii- fall-2008/pages/syllabus/

Students will be able:

CO1:Understand and comprehend various theories of coordination compounds.

CO2:Understand the spectroscopic and magnetic properties of coordination complexes.

CO3:Explain the stability of complexes and various experimental methods to determine the stability of complexes.

CO4:Predict the electronic transitions in a complex based on correlation diagrams and UV-visible spectral details.

CO5:Comprehend the kinetics and mechanism of substitution reactions in octahedral and square planar complexes.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	М
CO 2	Μ	S	S	S	S	M	S	S	S	S
CO 3	S	S	М	S	S	S	S	Μ	S	S
CO 4	М	S	S	S	S	M	S	S	S	S
CO 5	М	S	М	S	S	Μ	S	М	S	S

CO-PO Mapping (Course Articulation Matrix)

3 – Strong, 2 – Medium, 1 - Low

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3

CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

3.3

Title of the	ANALV	FICAL INS	TRI	IMENTA'	TIO	N TECHNIQ	UES		
Course			, i i i i i i i i i i i i i i i i i i i		110		0 ES		
Paper No.	Core XI								
Category	Core	Year	II	Credits	4	Course			
		Semester	III			Code			
Instructional	Lecture	Tutorial	Lat	Practice	•	Total			
hours per week	-	1	3			4			
Prerequisites									
Objectives of the						tification of spe			
course							ods of analysis.		
				taminants	in m	naterials using	turbidimetry and		
		ity measurem							
	To design experiments for analysis of inorganic and organic materials. To analyze constituents in materials using emission and absorption techniques.								
Course Outline	I o analyz	e constituent	s in m	aterials usi	ng er	nission and abs	orption techniques.		
	1. D di C. 2. D el of 3. C. N 4. C. 5. C. 6. De 7. Ac	fferent conc alculation of etermination ectrolyte at the Onsage onductomet aOH. onductomet termination id-base titra	entra f the n of th differ er's th ric tit ric tit of so tion (tions and dissociation he equival cent concest leory as lin ration of a ration of N ration of C lubility of strong acid	verif on co ent c ntrati nitin mix NH ₄ C CH ₃ C a spa d and	ying Ostwald nstant of the a onductance of ions and exam g law at high o ture of HCl ar Cl Vs NaOH. COONa Vs HC aringly soluble l weak acid vs	cid. a strong ining the validity dilutions. nd CH ₃ COOH Vs Cl. e salt.		

	2. Determination of pK_a of weak acid by EMF method.
	3. Potentiometric titration of FAS Vs K ₂ Cr ₂ O ₇
	4.Potentiometric titration of KI Vs KMnO _{4.}
	5.Potentiometric titration of a mixture of Chloride and Iodide Vs
	AgNO _{3.}
	6.Determination of the pH of buffer solution by EMF method using
	Quinhydrone and Calomel electrode.
	7. Precipitation titrations (mixture of halides only).
	UNIT-III: Interpretation and identification of the given spectra of
	various compounds arrived at from the following instruments
	1.UV-Visible
	2.IR
	3.Raman
	4.NMR
	5.ESR
	6.Mass etc.,
Extended	Questions related to the above topics, from various competitive
Professional	examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others
Component (is a	to be solved
part of internal	(To be discussed during the Tutorial hours)
component only,	
Not to be included	
in the external	
examination	
question paper)	
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional
from this course	Competency, Professional Communication and Transferable skills.
Recommended	1. Vogel's Text book of Practical Organic Chemistry, 5th Ed,
Text	ELBS/Longman, England, 2003.
	2. G. H. Jeffery, J. Bassett, J. Mendham and R. C. Denney, Vogel's
	Textbook of Quantitative Chemical Analysis; 6th ed., ELBS, 1989.
	3. J. D. Woollins, Inorganic Experiments; VCH: Weinheim,
	1995.
	4. B. Viswanathan and P.S.Raghavan, Practical Physical Chemistry,
	Viva
	Books, New Delhi,2009.
	5.Sundaram, Krishnan, Raghavan, Practical Chemistry (Part II), S.
	Viswanathan Co. Pvt., 1996.
Reference Books	1. N. S. Gnanapragasam and G. Ramamurthy, Organic Chemistry –
	Labmanual, S. Viswanathan Co. Pvt. Ltd, 2009.
	2. J. N. Gurtu and R. Kapoor, Advanced Experimental Chemistry, S.
	Chand and Co., 2011.
	3. J. B. Yadav, Advanced Practical Physical Chemistry, Goel
	Publishing House, 2001.
	4. G.W. Garland, J.W. Nibler, D.P. Shoemaker, Experiments in
	1. O. W. Garland, J. W. Moler, D.I. Shoemaker, Experiments III

	Physical Chemistry, 8th edition, McGraw Hill, 2009.5. J. N. Gurthu and R. Kapoor, Advanced Experimental Chemistry, S. Chand and Co., 1987.
Website and e-learning source	1. https://bit.ly/3QESF7t
	2. https://bit.ly/3QANOnX

Students will be able:

CO1: To recall the principles associated with various inorganic organic and physical chemistry experiments

CO2: To scientifically plan and perform all the experiments

CO3: To observe and record systematically the readings in all the experiments

CO4: To calculate and process the experimentally measured values and compare with graphical data.

CO5: To interpret the experimental data scientifically to improve students efficiency for societal developments.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	М	S	S	S	S	М
CO 2	М	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	М	S	S
CO 4	М	S	S	S	S	M	S	S	S	S
CO 5	М	S	Μ	S	S	Μ	S	М	S	S

CO-PO Mapping (Course Articulation Matrix)

3 – Strong, 2 – Medium, 1 - Low

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5		
CO1	3	3	3	3	3		
CO2	3	3	3	3	3		
CO3	3	3	3	3	3		
CO4	3	3	3	3	3		
CO5	3	3	3	3	3		
Weightage	15	15	15	15	15		
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0		
	<u> </u>						

3 – Strong, 2 – Medium, 1 – Low

3.4										
Title of the	ORGAN	IC CHEMI	STR	Y PRAC	ГІСА	L-II				
Course										
Paper No.	Core XII									
Category	Core	Year	II	Credits	4	Course				
		Semester	III			Code				
Instructional	Lecture	Tutorial	Lab	Practice	1	Total				
hours per week	-	1	3			4				
Prerequisites	Basic cor	cepts of or	gania	chemistr	·v	1				
Objectives of the						ion. qualitativ	ve analysis and			
course		on of organi		•	r	, -1	,			
		0		-	hand	ling of abomi	aal raaganta far			
							cal reagents for			
	-	n of binary a								
	-	To analyze the separated organic components systematically and								
	derivatize them suitably.									
	To construct suitable experimental setup for the organic preparations									
	involving two stages.									
	To experiment different purification and drying techniques for the									
<u> </u>	compound processing.									
Course Outline	UNIT-I:Estimations:									
		-	CDI	1 (1	• .	``				
	/	Estimation o				/				
		Estimation o		· ·		/				
	· · · ·			• •		ne (iodimetry)				
	· · · · ·	Estimation of				:				
		Estimation of			·	• /	.)			
					•	oups (reduction)			
	-	Estimation o Estimation o	-			• /				
	· · · · ·					ter (alkalimetr	v)			
	-	Estimation of					y)			
		Estimation of			- ·	•				
		Two stage			all	tylation)				
		Bromoaceta			ilina					
	/ 1	-Nitroanilin								
		3,5-Tribrom				ne				
	· · · · · ·	cetyl salicyc								
	· · · · · ·	enzilic acid			icury	sancylate				
		-Nitroanilin			Zene					
		-Nitrobenzo				henzoate				
	gj m			iu nom m	curyl	UCHZUALE				

	UNIT-III: Interpretation and identification of the given spectra of
	various organic compounds arrived at from the following instruments
	1.UV-Visible
	2.IR
	3.Raman
	4.NMR
	5.ESR
	6.Mass etc.,
D (1 1	
Extended	Questions related to the above topics, from various competitive
Professional	examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others
Component (is a	to be solved
part of internal	(To be discussed during the Tutorial hours)
component only,	
Not to be included	
in the external	
examination	
question paper)	
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional
from this course	Competency, Professional Communication and Transferable skills.
Recommended	4. A R West, Solid state Chemistry and its applications, 2ndEdition
Text	(Students Edition), John Wiley & Sons Ltd., 2014.
	5. A K Bhagi and G R Chatwal, A textbook of inorganic polymers,
	Himalaya Publishing House, 2001.
	6. L Smart, E Moore, Solid State Chemistry – An Introduction, 4 th
	Edition, CRC Press, 2012.
Reference Books	4. D. E. Douglas, D.H. McDaniel and J. J. Alexander, Concepts and
	Models in Inorganic Chemistry, 3rd Ed, 1994.
	5. R J D Tilley, Understanding Solids - The Science of Materials, 2 nd
	edition, Wiley Publication, 2013.
	6. C N R Rao and J Gopalakrishnan, New Directions in Solid State
	Chemistry, 2 nd Edition, Cambridge University Press, 199.
Website and	https://ocw.mit.edu/courses/3-091-introduction-to-solid-state-
e-learning source	chemistry-fall-2018/video galleries/lecture-videos/
0	Dutcomes (for Mapping with POs and PSOs)

Course Learning Outcomes (for Mapping with POs and PSOs) Students will be able:

CO1: To recall the basic principles of organic separation, qualitative analysis and preparation.

CO2: To explain the method of separation and analysis of separated organic mixtures and convert them as derivatives by suitable preparation method.

CO3: To determine the characteristics of separation of organic compounds by variouschemical reactions.

CO4: To develop strategies to separate, analyze and prepare organic compounds.

CO5:To formulate a method of separation, analysis of organic mixtures and design suitableprocedure for organic preparations.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	М
CO 2	М	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	М	S	S
CO 4	M	S	S	S	S	M	S	S	S	S
CO 5	Μ	S	М	S	S	Μ	S	Μ	S	S

CO-PO Mapping (Course Articulation Matrix)

Level of Correlation between PSO's and CO's

СО /РО	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

3 – Strong, 2 – Medium, 1 - Low

3.5										
	ELECTE	ROCHEMI	STR	Y, PHOTO	DCH	EMISTRY,				
Title of the	INTSRU	MENTATI	ON							
Course										
Paper No.	Elective V									
Category	Elective	Year	II	Credits	3	Course				
		Semester	III			Code				
Instructional	Lecture	Tutorial	Lat	Practice		Total				
hours per week	2	1	-			3				
Prerequisites		wledge of e								
Objectives of the	To under	stand the b	ehavi	ior of elec	ctrol	ytes in terms	of conductance,			
course	ionic atmo	osphere, inte	eracti	ons.						
	To famili	arize the st	ructu	re of the	elect	rical double l	ayer of different			
	models.									
	To compa	re electrode	s bet	ween curre	ent d	ensitv and ove	er potential.			
	-	To compare electrodes between current density and over potential. To discuss the fundamental understanding of various photophysical and								
	photochemcial processes.									
	To highlight the principle and applications of chromatographic									
	techniques									
Course Outline	UNIT-I:Ionics: Arrhenius theory -limitations, van't Hoff factor and its									
		•	-	1		1	strength, Debye			
							icient of strong			
	-	-		-			of Debye-Huckel			
	•	11				•	tes modifications			
		olications.El		•		tion-Debye-H	-			
							ative verification			
		tions. Evide				*	1			
				•			al phenomena - l non-polarizable			
				•	-		equation electro			
	capillary	curves.		ctro-kineti		phenomena	electro-osmosis,			
					-	1	als. Structure of			
	· ·	-	-	•		-	Stern models of			
							at zero charge.			
		ons and limi		-		1	8			
					ary]	Electrode Re	actions: Rate of			
					•		entary reactions.			
	Butler-Vo	olmer equat	ion-s	ignificance	e of	exchange cur	rrent density, net			
		•		• •			and high field			
	11	•		•		d transfer c				
							electro chemical,			
						-	ls. Evolution of			
	oxygen	•	-			pH.Pourbia				
	diagrams.	FuelCells:c	lassif	ication, a	lkalir	ne tuel cells,	phosphoric acid			

	fuel cells, high temperature fuel cells.								
	UNIT-IV:Photochemistry								
	Franck-Condon principle-Jablonskii diagram-primary and secondary processes-Flourescence and phosphorescence-Quantum yield-Chemical actionometry-Photosensitization, chemiluminescence. Kinetics of photochemical processes-H ₂ and Cl ₂ reaction-Excimers and Exciplexes. Mechanism of fluorescence quenching- Stern-Volmer equation and its applications. Photodegradation of polymers- Atmospheric photochemistry.								
	Photo-voltaic cells-Photo-assisted electrolysis of water-Aspects of solar energy conversion.								
	UNIT-V:Instrumentation: Chromatography-Classification of chromatographic methods, principles of differential migration, adsorption phenomenon, nature of adsorbents, solvent systems. Gas Chromatography-Theory and instrumentation (Block Diagram), Types of stationary phases and carrier gases (mobile phase). High performance liquid chromatography-Theory and instrumentation, stationary phases and mobile phases. Spectrophotometer-Principle, Sources of Radiations, Sampling, Block diagram of UV-Visible and FT-IR Spectrophotometer Polarography-Principle and applications. Principle of Cyclic voltammetry.								
Extended	Questions related to the above topics, from various competitive								
Professional	examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others								
Component (is a	to be solved								
part of internal	(To be discussed during the Tutorial hours)								
component only,									
Not to be included									
in the external									
examination									
question paper)									
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional								
from this course Recommended	Competency, Professional Communication and Transferable skills. 1. D. R. Crow, Principles and applications of electrochemistry,								
Text	4thedition, Chapman & Hall/CRC, 2014.								
ICAL	2. J. Rajaram and J.C. Kuriakose, Kinetics and Mechanism of								
	chemical transformations Macmillan India Ltd., New Delhi, 2011.								
	3. S. Glasstone, Electro chemistry, Affiliated East-West Press, Pvt.,								
	Ltd., New Delhi, 2008.								
	4. B. Viswanathan, S. Sundaram, R. Venkataraman, K. Rengarajan and P.S. Raghavan, Electrochemistry-Principles and applications,								
	 S. Viswanathan Printers, Chennai,2007. 5. Joseph Wang, Analytical Electrochemistry, 2nd edition, Wiley, 2004. 								
Reference Books	 J.O.M. Bockris and A.K.N. Reddy, Modern Electro chemistry, vol.1 and 2B, Springer, Plenum Press, New York, 2008. 								

2.	J.O.M. Bockris, A.K.N. Reddy and M.G. Aldeco Morden Electro
	chemistry, vol. 2A, Springer, Plenum Press, New York, 2008.
3.	Philip H. Rieger, Electrochemistry, 2 nd edition, Springer, New
	York, 2010.
4.	L.I. Antropov, Theoretical electrochemistry, Mir Publishers, 1977.
5.	K.L. Kapoor, A Text book of Physical chemistry, volume-3,
	Macmillan, 2001.

Website and e-learning source	1. <u>https://www.pdfdrive.com/modern-electrochemistry-e34333229.</u>
Course Learning C	Dutcomes (for Mapping with POs and PSOs)
Students will be abl	e:
	d the behaviour of electrolytes in solution and compare the structures of
-	ver of different models.
equations	the kinetics of electrode reactions applying Butler-Volmer and Tafel
CO3: To study diffe	erent thermodynamic mechanism of corrosion,
•	the theories of electrolytes, electrical double layer, electrodics and
	1. 1

CO5: To have knowledge on storage devices and electrochemical reaction mechanism.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	М
CO 2	М	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	М	S	S
CO 4	М	S	S	S	S	M	S	S	S	S
CO 5	М	S	М	S	S	М	S	Μ	S	S

CO-PO Mapping (Course Articulation Matrix)

3 – Strong, 2 – Medium, 1 - Low

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Level of Correlation between PSO's and CO's

3 – Strong, 2 – Medium, 1 - Low

3.6 Internship / Industrial activity

3.7 Skill Enhancement – II

From group G

Industrial Chemistry

UNIT- I CHEMICAL TECHNOLOGY

Basic principles of distillation, solvent extraction, solid-liquid leaching and liquid liquid extraction, separation by absorption and adsorption. An introduction into the scope of different types of equipment needed in chemical technology, including reactors, distillation columns, extruders, pumps, mills, emulgators.

UNIT –II INDUSTRIAL GASES AND INORGANIC CHEMICALS

Industrial Gases: Large scale production, uses, storage and hazards in handling of the following gases: oxygen, nitrogen, argon, helium, hydrogen, acetylene, carbon monoxide, chlorine, fluorine, sulphur dioxide and phosgene. Inorganic Chemicals: Manufacture, application, analysis and hazards in handling the following chemicals: hydrochloric acid, nitric acid, sulphuric acid, caustic soda, bleaching powder, sodium thiosulphate, hydrogen peroxide, potash alum.

UNIT -III INDUSTRIAL METALLURGY

Preparation of metals (ferrous and nonferrous) and ultra pure metals for semiconductor

technology: Silicon, Germanium, Indium and Tantalum.

UNIT -IV FUEL CHEMISTRY

Classification of fuels and their calorific value. Coal: Uses of coal (fuel and non fuel) in various industries, its composition, carbonization of coal. Coal gas, producer gas and water gas—composition and uses. Fractionation of coal tar, uses of coal tar bases chemicals, requisites of a good metallurgical coke, Coal gasification (Hydro Gasification and Catalytic gasification), Coal liquefaction and Solvent Refining. Petrochemicals: Vinyl acetate, Propylene oxide, Toluene and Xylene. Lubricants: Classification of lubricants, lubricating oils (conducting and non-conducting) Solid and semisolid lubricants, synthetic lubricants.

UNIT -V OILS AND FATS

Classification of oils, fat splitting, distillation of completely miscible and nonmiscible oils, hydrogenation of oils, rancidity, saponification value, iodine number, acid value, Soap and Synthetic Detergent, preparation of soap and detergent, different types of soap and their composition, surfactants (LAS, ABS, LABS), detergent binders and builders.

Reference Books

1. J.P. Mukhlyonov: Fundamentals of Chemical Technology.

2. M.G. Rao, M.Sittig: Dryden's out line of Chemicals Technology.

3. G.L. Kehl: Principles of Metallographic Laboratory Practice,

4. Dr. B.K. BhaskaraRao "A Text on Petro Chemicals" 1st Edition, Khanna, Publishers.

5. Bhagan Sahay "Petroleum Exploration and Exploitation Practices" Allied Publishers Ltd., Chennai,

1994.

1 1

6. W.L Nelson "Petroleum Refinery Engineering", 4th Edition, McGraw Hill.

7. Principles of Unit Operations by A.S.Foustetal – Wiley International Edition – 1960.

8. Chemical Engineering Vol-1&II by J.M.Coulson and J.F.Richordson – Sixth Edition Butterworth –

New Delhi – 2000.

Semester 4

4.1										
Title of the	COORD	COORDINATION CHEMISTRY – II								
Course										
Paper No.	Core X1	Core X111								
Category	Core	Year	II	Credits	4	Course				
		Semester	IV			Code				
Instructional	Lecture	Tutorial	Lal	b Practice		Total				
hours per week	5	1	-			6				
Prerequisites	Basic kno	wledge of i	norg	anic chemi	stry					
Objectives of the	To reco	gnize the f	funda	imental co	oncep	ots and structural aspects of				
course	organom	etallic comp	ound	ls.						

	T. 1. $1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 $
	To learn reactions of organometallic compounds and their catalytic
	behaviour.
	To identify or predict the structure of coordination compounds using
	spectroscopic tools.
	To understand the structure and bonding in coordination complexes.
	To evaluate the spectral characteristics of selected complexes.
Course Outline	UNIT-I: Chemistry of organometallic compounds: Classification of
	organometallic compounds based on M-C bond – 18 and 16 electron
	rule; Bonding in metal – olefin complexes (example: Ziese's salt),
	metal-acetylene and metal-allyl complexes; Metal-cyclopentadienyl
	complexes – Examples and MO approach to bonding in metallocenes;
	fluxional isomerism. Metal – carbonyl complexes: MO diagram of CO;
	Structure and bonding - bonding modes, MO approach of M-CO
	bonding, π -acceptor nature of carbonyl group, synergistic effect
	(stabilization of lower oxidation states of metals); Carbonyl clusters:
	Low nuclearity and high nuclearity carbonyl clusters – Structures based
	on polyhedral skeleton electron pair theory or Wade's rule.
	UNIT-II: Reactions and catalysis of organometallic compounds:
	Reactions of organometallic compounds: Oxidative addition, reductive
	elimination (α and β eliminations), migratory insertion reaction and
	metathesis reaction.Organo-metallic catalysis: Hydrogenation of olefins
	(Wilkinson's catalyst), hydroformylation of olefins using cobalt or
	rhodium catalysts (oxo process), oxidation of olefin (Wacker process),
	olefin isomerisation, water gas shift reaction, cyclo-oligomerisation of
	acetylenes using Reppe's catalysts, Monsonto process.
•	UNIT-III: Inorganic spectroscopy -I: IR spectroscopy: Effect of
	coordination on the stretching frequency-sulphato, carbonato, sulphito,
	aqua, nitro, thiocyanato, cyano, thiourea, DMSO complexes; IR
	spectroscopy of carbonyl compounds. NMR spectroscopy-
	Introduction, applications of 1H, 15N, 19F, 31P-NMR spectroscopy in
	structural identification of inorganic complexes, fluxional molecules,
,	quadrupolar nuclei- effect in NMR spectroscopy.
	UNIT-IV: Inorganic spectroscopy-II: Introductory terminologies: g
	and A parameters-definition, explanation and factors affecting g and A;
	Applications of ESR to coordination compounds with one and more
	than one unpaired electrons – hyperfine and secondary hyperfine r_{i}
	splitting and Kramer's doublets; ESR spectra of V(II), Mn(II), Fe(II),
	Co(II), Ni(II), Cu(II) complexes, bis(salicylaldimine)copper(II) and $[O(II), O(I), O(I)] = O(II) \sum_{i=1}^{3^{+}} M_{i}$
	$[(NH_3)_5Co-O_2-Co(NH_3)_5]^{5+}$ Mossbauer spectroscopy – Mossbauer
	effect, Recoil energy, Mossbauer active nuclei, Doppler shift, Isomer
	shift, quadrupole splitting and magnetic interactions. Applications of
	Mössbauer spectra to Fe and Sn compounds.
	UNIT-V: Photo Electron Spectroscopy: Theory, Types, origin of fine
	structures - shapes of vibrational fine structures - adiabatic and vertical
	transitions, PES of homonuclear diatomic molecules (N_2 , O_2) and
	heteronuclear diatomic molecules (CO, HCl) and polyatomic

Extended Professional Component (is a part of internal component only, Not to be included in the external examination question paper)	molecules (H ₂ O, CO ₂ , CH ₄ , NH ₃) – evaluation of vibrational constants of the above molecules. Koopman's theorem- applications and limitations.Optical Rotatory Dispersion – Principle of CD and ORD; Δ and λ isomers in complexes, Assignment of absolute configuration using CD and ORD techniques. Questions related to the above topics, from various competitive examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others to be solved (To be discussed during the Tutorial hours)
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional
from this course	Competency, Professional Communication and Transferable skills.
Recommended Text	 J E Huheey, EA Keiter, RL Keiter and OK Medhi, Inorganic Chemistry – Principles of structure and reactivity, 4th Edition, Pearson Education Inc., 2006 G L Meissler and D ATarr, Inorganic Chemistry, 3rd Edition, Pearson Education Inc., 2008 D. Bannerjea, Co-ordination Chemistry, TATA Mcgraw Hill, 1993. B D Gupta and A K Elias, Basic Organometallic Chemistry: Concepts, Syntheses and Applications, University Press, 2013. F. A. Cotton, G. Wilkinson.; C. A. Murillo; M. Bochmann, Advanced Inorganic Chemistry, 6thed.; Wiley Inter-science: New York, 1988.
Reference Books	 Crabtree, Robert H. The Organometallic Chemistry of the Transition Metals. 3rd ed. New York, NY: John Wiley, 2000. P Gütlich, E Bill, A X Trautwein, Mossbauer Spectroscopy and Transition Metal Chemistry: Fundamentals and Applications, 1st edition, Springer-Verlag Berlin Heidelberg, 2011. Concepts and Models of Inorganic Chemistry, B. Douglas, D. McDaniel, J. Alexander, John Wiley, 1994, 3rd edn. K. F. Purcell, J. C. Kotz, Inorganic Chemistry; Saunders: Philadelphia, 1976. R. S. Drago, Physical Methods in Chemistry; Saunders: Philadelphia, 1977.

Website and	https://archive.nptel.ac.in/courses/104/101/104101100/
e-learning source	

Students will be able:

CO1: Understand and apply 18 and 16 electron rule for organometallic compounds

CO2: Understand the structure and bonding in olefin, allyl, cyclopentadienyl and carbonyl containing organometallic compounds

CO3: Understand the reactions of organometallic compounds and apply them in CO4: understanding the catalytic cycles

CO5: Identify / predict the structure of coordination complexes using spectroscopic tools such as IR, NMR, ESR, Mossbauer and optical rotatory dispersion studies to interpret the structure of molecules by various spectral techniques.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	М	S	S	S	S	М
CO 2	М	S	S	S	S	М	S	S	S	S
CO 3	S	S	М	S	S	S	S	Μ	S	S
CO 4	М	S	S	S	S	Μ	S	S	S	S
CO 5	М	S	Μ	S	S	Μ	S	Μ	S	S

CO-PO Mapping (Course Articulation Matrix)

3 - Strong, 2 - Medium, 1 - Low

Level of Correlation between PSO's and CO's

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

3 – Strong, 2 – Medium, 1 – Low

4.2										
Title of the	PHYSI	PHYSICAL CHEMISTRY-II								
Course										
Paper No.	Core X	Core XIV								
Category	Core	Year	II	Credits	4	Course				

		Semester	IV		Code							
Instructional	Lecture	Tutorial	Lab Practice		Total							
hours per week	5	1	-		6							
Prerequisites	Basic knowledge of physical chemistry											
Objectives of the	To understand the essential characteristics of wave functions and need											
course	for the qu	for the quantum mechanics. To know the importance of quantum mechanical models of particle in a										
					hanical models	of particle in a						
		box, rigid rotor and harmonic oscillator.										
	To apply	To apply the quantum mechanics to hydrogen and polyelectronic										
	systems.											
	To familiarize the symmetry in molecules and predict the point groups.											
	To predict the vibrational modes, hybridization using he concepts of											
	group the											
Course Outline						Particle wave						
						erties of wave						
		-				d, Orthogonal,						
						n properties of						
	-		-			oody radiation, um mechanics,						
	-				-	equation, Time						
		ent and time		Sem	ounger wave	equation, Thie						
	macpena	ent and thire	dependent									
	UNIT-II	: Quantum	models: Parti	icle i	n a box-1D, tv	vo dimensional						
						ear conjugated						
						nic Oscillator-						
		-	-	-	vave equation a							
	1		C		1							
	UNIT-II	I: Applicat	tions to Hydr	ogen	and Poly el	ectron atoms:						
	Hydroger	1 atom and h	nydrogen like id	ons, H	Iamiltonian-wa	ve equation and						
						tion of radial						
						n methods: trial						
						ticle in 1D box.						
						self-consistent						
			atom-electron	spin,	Paulis exclusio	on principle and						
		ermination.		1								
		-	• •			etry elements,						
	-					point groups-						
					1	and classes of						
			he Great			lirect product theorem –						
	representa				0 1	onstruction of						
			C_{2v} , and C_{3v} point									
		Annlicati	r_{v} , and r_{3v} point	<u>510u</u>	ps. nd group theo	ory: Hydrogen						
	Molecule	-Molecular	orbital theory a	ind H	eitler London (VB) treatment,						
						inear variation						
						system:Huckel						
	Tunction	unu LCAC		eu om	e conjugated	system.mucker						

	method to Ethylene butadiene, and Benzene. Applications of group theory to molecular vibrations, electronic spectra of ethylene.
	······································
Extended Professional Component (is a part of internal component only, Not to be included in the external examination question paper)	Questions related to the above topics, from various competitive examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others to be solved (To be discussed during the Tutorial hours)
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional
from this course	Competency, Professional Communication and Transferable skills.
Recommended Text	 R.K. Prasad, Quantum Chemistry, New Age International Publishers, New Delhi, 2010, 4th revised edition.
	 F. A. Cotton, Chemical Applications of Group Theory, John Wiley & Sons, 2003, 2nd edition. A. Vincent, Molecular Symmetry and Group Theory. A Programmed Introduction to Chemical Applications, John and Willy & Sons Ltd., 2013, 2nd Edition. T. Engel & Philip Reid, Quantum Chemistry and Spectroscopy, Pearson, New Delhi, 2018, 4th edition. G. K. Vemulapalli, Physical Chemistry, Prentice Hall of India Pvt. Ltd. 2001. 6. D.A. McQuarrie, Quantum Chemistry, Viva Books PW. Ltd, 2013, 2nd edition.
Reference Books	 N. Levine, Quantum Chemistry, Allyn& Bacon Inc, 1983, 4th edition. D.A. McQuarrie and J. D. Simon, Physical Chemistry, A Molecular Approach, Viva Books Pvt. Ltd, New Delhi, 2012. R. P. Rastogi & V. K. Srivastava, An Introduction to Quantum Mechanics of Chemical Systems, Oxford & IBH Publishing Co., New Delhi, 1999. R.L. Flurry. Jr, Symmetry Group Theory and Chemical applications, Prentice Hall. Inc, 1980 J. M. Hollas, Symmetry in Molecules, Chapman and Hall, London, 2011, Reprint.

Website and	1. https://nptel.ac.in/courses/104101124
e-learning source	2. https://ipc.iisc.ac.in/~kls/teaching.html

Students will be able:

CO1: To discuss the characteristics of wave functions and symmetry functions.

CO2: To classify the symmetry operation and wave equations.

CO3: To apply the concept of quantum mechanics and group theory to predict the electronic structure.

CO4: To specify the appropriate irreducible representations for theoretical applications.

CO5: To develop skills in evaluating the energies of molecular spectra.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	M
CO 2	М	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	Μ	S	S
CO 4	М	S	S	S	S	M	S	S	S	S
CO 5	Μ	S	Μ	S	S	Μ	S	Μ	S	S

CO-PO Mapping (Course Articulation Matrix)

3 – Strong, 2 – Medium, 1 - Low

Level of Correlation between PSO's and CO's

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
C05	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to POs	3.0	3.0	3.0	3.0	3.0

4.3 CORE XV

PROJECT WITH VIVA

4.4 Elective VI

Industry / Entrepreneurship

Title of the Course	INDUSTRY ENTREPRENEURSHIP									
Paper No.	Elective VI									
Category	Elective	Year	II	Credits	3	Course				
	Semester IV		Code							
Instructional	Lecture	Tutorial	Lat	Practice	•	Total				
hours per week	1	-	3			4				
Prerequisites			•			_ ·				
Objectives of the	To under	stand the ess	sentia	al requiren	nent	for chemistry r	elated industries			
course	To know	the importai	nce o	f chemical	indu	ustries				
	To apply	the knowled	lge oi	n chemistr	y to	think about sta	rtup companies			
	To familiarize the procedure and instrumentation involed in the									
	synthesis in a chemical industry To predict the prons-cons of running a small and medium chemical industry									
Course Outline	Theory:									
	-	-			-	-	, small, medium			
	industries. Government policies and regulationsEntrepreneurship-2: Entrepreneur: Characteristics or Attributes of an									
	Entrepreneur. Entrepreneurial Orientation, Entrepreneurial Competency.									
	Entrepreneurship Development in India Practical: Industrial Visit and report submission									
Extended	Ouestions	s related to I	ndus	try and En	trepro	eneurship				
Professional	Questions related to Industry and Entrepreneurship (To be discussed during the Tutorial hours)									
Component (is a										
part of internal										
component only,										
Not to be included										
in the external										
examination										
question paper)										
Skills acquired	Knowledge, Problem solving in industrial setup, Analytical ability,									
from this course	Professional Competency, Professional Communication.									
Recommended		^	•							
Text										
Reference Books										

Website and e-learning source	
Course Learning C	Outcomes (for Mapping with POs and PSOs)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	М
CO 2	М	S	S	S	S	Μ	S	S	S	S
CO 3	S	S	М	S	S	S	S	M	S	S
CO 4	М	S	S	S	S	М	S	S	S	S
CO 5	М	S	М	S	S	М	S	М	S	S

CO-PO Mapping (Course Articulation Matrix)

Level of Correlation between PSO's and CO's

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

3 – Strong, 2 – Medium, 1 - Low

4.5 Skill enhancement / Professional Competency skill (VAC)

<u>Value-added courses offered by the Department of Chemistry imparting transferable and</u> <u>life skills to chemistry graduates.</u>

Chemistry for Life

UNIT–I ENVIRONMENT

The air we breathe - composition of air - burning of hydrocarbons - fog - air quality -ozone - oxygen/ozone screen - biological effect of UV radiation - ozone formation and distribution in the atmosphere - paths of ozone destruction - chloroflurocarbons and their interactions with ozone – the Antartic ozone hole.

Unit II Environmental pollution- Water: Introduction, water pollutants: oxygen demanding wastes, pathogens, nutrients, salts, thermal pollution, heavy metals, pesticides, volatile organic compounds; characterization of wastewater, methods & equipments used in wastewater treatment. Physical, chemical and biological water quality parameters; their assessment. Water treatment processes: aeration, solid purification nanofiltration, chemical treatments, reverse osmosis, desalination. Soil & land pollution: Trace elements - pollution & control. Industrial pollution: Sugar, drug, paper and pulp sectors, thermal power plants. Disposal of waste and its management. Chemical solutions to environmental problems, principles of decomposition, biodegradability, better industrial processes.

Unit III: AGRICULTURAL CHEMISTRY

Fertilisers - classification - characteristics and uses - a brief study of additives use and abuse of additives in foods and beverages. AGROCHEMICALS: Classification of pesticides, structure, synthesis, mode of action and application of the following: Nicotine, Pyrethroids, diclone, captan, heptachlor, Melation, Parathion. Dithiocarbamates: Nabum, Ziram, structure and mode of formulation. Dry formulation of pesticides by dusts, granules, table powders and seed disinfectant. Liduid formulation of pesticides by Emulsions, suspensions, aerosols and sprays

Unit IV: CHEMISTRY IN ENERGY PRODUCTION

Solar energy – fuel from sun light – splitting of water – hydrogen from sunlight – hydrogen economy - fuel cells - batteries - photovoltaics - stealing the sun - nuclear energy - nuclear fission and fusion - production of electricity by a nuclear reactor - radioactivity and the hazards of radioactivity – living with nuclear power.

UNIT-V DYES, SOAPS AND DETERGENTS

Dyes - classification based on mode of application and structure - paints - ingredients - drying - pigments - types and properties - varnish. Soaps and detergents - classification - ingredients - solids and liquids - disinfectants (phenyl, dettol type) - perfumes - raw materials - perfumes used in soaps - cosmetics and agarbatti.

4.6 Extension activity – USSR